-->

Создано человеком

На нашем литературном портале можно бесплатно читать книгу Создано человеком, Жаворонков Николай Михайлович-- . Жанр: Прочее домоводство. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Создано человеком
Название: Создано человеком
Дата добавления: 16 январь 2020
Количество просмотров: 200
Читать онлайн

Создано человеком читать книгу онлайн

Создано человеком - читать бесплатно онлайн , автор Жаворонков Николай Михайлович

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Полученный таким образом металл имеет мелкозернистую структуру и соответственно более высокую прочность. Скажем, класс высокопрочных сталей, так называемой двойной структуры, сочетает в себе ковкость и технологичность более мягких низкоуглеродистых сталей и прочность, свойственную только высокоуглеродистой инструментальной стали.

Думаю, что на смену многим, успешно используемым сегодня в науке и технике материалам, придут и так называемые стекловидные металлы. Дело в том, что хотя обычные металлы представляют собой кристаллические структуры, некоторые сплавы обладают уникальной способностью при очень быстром охлаждении (от 100 тысяч градусов до 1 тысячи градусов Цельсия в секунду) превращаться в некристаллические, аморфные структуры.

Главным образом это материалы на основе железа, кобальта, никеля. Они способны затвердевать в стекловидной форме в виде лент шириной семь-восемь сантиметров и толщиной в доли миллиметра. Магниты из стекловидных металлов отличаются высокой механической прочностью, а энергетические потери таких материалов во время цикла намагничивания чрезвычайно низки.

Эта удивительная комбинация свойств делает стекловидные металлы серьезными конкурентами железокремниевых сплавов, используемых сегодня для производства сердечников в трансформаторах, применяющихся на лиN ниях электропередачи высокого напряжения. Американские ученые подсчитали, что переход на трансформаторные сердечники из стекловидного металла мог бы сэкономить количество электроэнергии, эквивалентное 954 миллионам литров нефти в год.

Но хотя замена всего парка ныне работающих на линиях электропередачи высокого напряжения трансформаторов из стекловидных металлов сулила бы колоссальную экономию, ни одной стране в мире подобное мероприятие сегодня не по силам: слишком уж трудоемка и дорога эта процедура. Те же американские ученые считают посильным и разумным гораздо более умеренные темпы ее осуществления: за год можно обновлять десятую часть всего установленного парка трансформаторов.

Если учесть, что стекловидные металлы отлично противостоят коррозии, то и такое вроде бы замедленное его внедрение способно окупить затраты, связанные с проведением необходимых работ.

Среди новых конструкционных материалов, все решительней меняющих судьбу и характер главнейших приоритетных направлений научно-технического прогресса, лидерами по-прежнему остаются (и, безусловно, останутся на ближайшую перспективу) титан, гафний, цирконий, ниобий, тантал, молибден, вольфрам.

Самое большое распространение на сегодняшний день получил титан. И хотя о его достоинствах и применении я уже рассказывал довольно подробно, включая и нелегкую историю открытия, должен вновь обратиться к его удивительным качествам. Дело в том, что из этого на редкость коррозионноустойчивого металла сегодня изготавливают рабочие лопатки низконапорных паровых турбин, титановые детали широко используются в химических реакторах. И он же остается неизменным лидером среди конструкционных материалов, применяемых в авиации. И хотя титан по содержанию в земной коре один из самых распространенных металлов (после алюминия, железа, магния), высочайший спрос на него на международном рынке требует серьезных напряжений всех мировых титанопроизводящих мощностей.

Цирконий и гафний - два металла, нашедшие в наши дни самое широкое распространение в атомной энергетике. Секрет циркония в том, что он обладает крайие низкой нейтроннопоглощающей способностью. Другими словами, он спокойно пропускает нейтроны, поддерживающие процесс атомного расщепления. К тому же цирконий наделен природой высочайшей антикоррозийной стойкостью в высокотемпературной воде.

Его "партнер" гафнии - тоже высококоррозионный металл, но в отличие от циркония превосходно поглощает нейтроны. Вот почему он, по существу, идеальный материал для изготовления штанг управления ТВЭЛами (тепловыделяющими элементами) в легководных атомных реакторах.

Ниобий и тантал, молибден и вольфрам - материалы будущего. Вероятнее всего, что, помимо широкого их применения в ракетостроении и при создании космических кораблей, они найдут самое широкое распространение в производстве горячих штампов и химического оборудования.

Конечно, этот своеобразный парад материалов, претендующих на роль лидера в ближайшей перспективе материаловедения, можно было бы продолжать довольно долго. Рискну все же прервать его для очень важного, на мой взгляд, отступления, суть которого сводится к следующему: не ошибаются ли ученые, называя среди материалов, которым предстоит трудиться на нужды науки и промышленности XXI века, те из них, что и сейчас имеют самое широкое распространение?

Думаю, что нет, не ошибаются. Хотя поверить в это действительно нелегко. Недаром мой старый друг, прочитав рукопись этой книги, несказанно удивился, узнав, что дерево - старый верный материал, известный людям, как говорится, испокон веков - отнесен в ней в разряд перспективных. Какой же он перспективный, если из него еще наши предки рубили дома, строили корабли, гнали живицу, жгли уголь?

Все верно, так оно и есть. Но одно другому не помеха. И скажи кто-то в свое время нашим прапрадедам, что придет пора, и дерево обернется материалом прочным, как сталь, тяжелым, как камень, не будет гореть в огне и мгновенно пойдет ко дну, если окажется в воде - ни за что бы не поверили. Между тем, все эти удивительные свойства не выдумка, не вымысел фантастов. Древесина с совершенно не свойственными ей от природы качествами существует и применяется с самыми различными целями и назначениями.

Это новый, весьма перспективный материал. Сегодня естественный, природный композиционный материал - древесина - стал основой великого множества конструкционных материалов. И чем еще он нас порадует, покажет будущее.

Так что новым материал называется отнюдь не потому, что он недавно открыт, создан, синтезирован. Новым, перспективным его делают качества, обнаруженные в нем учеными в процессе решения какой-то научной или практической задачи или специально созданные в нем, запрограммированные с какой-то целью неизвестные доселе свойства. Вспомните-ка общеизвестные крылатые выражения: твердый, как кремень; не человек - кремень. Твердость решений, непоколебимость характера, упорство в достижении цели ассоциируются в нашем представлении со словами "как кремень".

Но прошло время, и жизнь показала, что отнюдь не одна твердость, как говорится, вывела кремний в число перспективных, новейших материалов. Именно кремний считается в наши дни стандартным материалом для изготовления элементов солнечных батарей. Ленточные монокристаллы кремния, используемые в таких батареях, открывают возможность осуществления заветной мечты человечества - прямого превращения солнечного света в электрическую энергию.

Или взять, например, сверхпроводники. Разве мало известно их уже в наши дни? Достоинствами сверхпроводимости обладают многие десятки материалов. Но все ли их качества выявлены? И нельзя ли отыскать материалы, способные становиться сверхпроводящими при более высоких температурах? Между тем, как экономике нашей страны, так и экономике других государств такие материалы очень бы пригодились. Ведь провода, сделанные из сверхпроводников, не оказывают никакого сопротивления идущему по ним электротоку. А это значит, что в отличие от традиционных проводников, таких, как медь и алюминий, здесь полностью исключается потеря электроэнергии.

Создать новый материал отнюдь не значит открыть новый, не вписанный еще в таблицу Менделеева элемент.

Вопрос чаще всего ставится по-иному: придать новые качества уже известному материалу, открывающие широчайшие возможности его применения в технике.

Так, общеизвестно, что сплав ниобия и германия имеет наивысшую изо всех до сих пор известных металлов температуру перехода в сверхпроводящее состояние - минус 250 градусов Цельсия. Но эти чрезвычайно нужные для современной техники свойства сплава долгое время не могли быть никак использованы: он оказывался слишком хрупким для обработки. А сверхпроводящий проводник, выполненный из сплава ниобия и олова, охлажденный гелием, уже несет циркулирующий ток в сверхпроводящих магнитах, а они используются в самых различных установках.

Перейти на страницу:
Комментариев (0)
название