Электронные системы охраны
Электронные системы охраны читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Стекло
Ультразвуковые допплеровские детекторы незаменимы и прекрасно работают в зонах, ограниченных стеклянными преградами. Ультразвук, в отличие от других излучений, почти не проникает сквозь стекло, и датчик не реагирует на перемещения вне контролируемой зоны, снижая почти до нуля риск наведенных извне ложных тревог. Вне зоны риска не найдется каких-либо иных излучений, которые, проникнув через стекло, заставили бы ультразвуковой датчик сработать.
Большие площади
Поскольку для выбора частоты ультразвукового передатчика не требуется государственная лицензия, то в одном большом помещении может быть установлено несколько датчиков, излучающих энергию на разных частотах. При этом надо будет лишь стремиться избегать интерференции, как это будет описано выше. Общее необходимое число ультразвуковых датчиков может быть рассчитано с учетом количества зон риска внутри помещения.
Малые площади
Если речь идет о закрытых помещениях небольшого размера, то в них ультразвуковые датчики зарекомендовали себя прекрасными сторожами как зон большого, так и малого риска.
Открытые зоны в помещениях
Обычно ультразвуковой датчик - это последнее звено в системе охраны. Он позволяет обнаружить нарушителя непосредственно в зоне риска после того, как тот преодолел периметровые электронные и физические средства зашиты. То, что зону обнаружения для ультразвуковых датчиков можно легко регулировать, позволяет использовать их для слежения за коридорами и иными незакрытыми подходами к зоне риска.
Однако не следует думать на основании вышесказанного, что ультразвуковая сигнализация есть панацея от всех напастей. Она, как и все прочие формы сигнализации, уязвима для специфических источников ложных тревог. Цель этого раздела, в принципе, и заключается в том, чтобы объединить усилия исследователя и инженера в выборе конкретного типа датчика для конкретных условий. И таким датчиком может стать ультразвуковой, микроволновый, инфракрасный или иной датчик.
Неблагоприятные случаи использования ультразвуковых датчиков
В практике служб безопасности при выборе подходящей системы сигнализации слишком часто приходится действовать методом исключения неудачных решений. Все еще встречаются случаи, когда никакие известные типы датчиков не подходят, поэтому простор для творчества остается.
Допплеровский ультразвуковой датчик может засечь практически любое движение, и поэтому, рассматривая неблагоприятные случаи использования этих приборов, лучше сконцентрировать внимание на источниках ложных тревог. С учетом сказанного остановимся на следующих случаях.
Работа на открытом воздухе
Различающая способность ультразвукового датчика не снижается под открытым небом, но зато так увеличивается количество движущихся природных объектов, что прибор бьет тревогу почти непрерывно. Именно поэтому его не применяют вне помещений. Если инженерам удастся научить систему отфильтровывать ложные сигналы, подаваемые дождем, несущимися по ветру объектами, порывами ветра, птицами и животными, то прибор будет намного шире применяться вне помещений.
Вращающиеся лопасти
Хотя ультразвуковые датчики и устойчивы в разумных пределах по отношению к перемещению воздуха, они все же крытых турбин. Ультразвуковые датчики больше, чем любой тип сигнализации, реагируют на лопастные механизмы из-за высокой вероятности взаимодействия вращающихся лопастей с ультразвуковым излучением, приводящего к появлению допплеровского сдвига частоты близкого тому, который возникает при движении нарушителя. Причем, датчики оказываются чувствительными и к лопастным устройствам внутри вентиляционных шахт.
Раскачивание от ветра
Движение вперед-назад в пучке ультразвукового датчика рождает допплеровский эффект. В охраняемом помещении подобные движения может с тем же эффектом совершать не только нарушитель, но и шторы и жалюзи на окнах. На первый взгляд с этой помехой справиться просто, и, действительно, ряд моделей детекторов подавляет такой сигнал. Однако устройство, подавляющее помехи от медленных колебаний, вряд ли стоит использовать там, где важно сохранить способность допплеровского датчика засекать очень медленное движение. Поэтому в случаях, когда нельзя устранить колеблющиеся предметы, следует прикинуть, что важнее - снизить опасность пропуска квалифицированного нарушителя или снизить процент ложных тревог.
Вибрация
Резонансные частоты каркасов зданий, как правило, лежат ниже зоны чувствительности ультразвуковых датчиков. Однако примером типичного исключения из этого правила является звон окон в резонанс с мотором проехавшего поблизости автомобиля. В одном из Лондонских банковских хранилищ ультразвуковой датчик реагировал на проезд метро под зданием.
Казалось бы, вибрация от такого движения лежит ниже допплеровского разброса частот, однако исследование показало, что каркас здания хранилища был очень жестким. При его строительстве широко использовались стальная арматура и напряженный бетон. При проезде поезда хранилище вибрировало с частотой в 70 герц, а это уже попадало в гармонику допплеровского сдвига для ультразвуковых колебаний. В тот период иных равнозначных методов обнаружения еще не существовало, и датчики пришлось установить на специальных противовибрационных подставках. Если нет возможности соорудить такие подставки, то следует избегать установки ультразвуковых датчиков в местах, подверженных вибрации.
Телефонные аппараты
В Великобритании звук звонка телефонного аппарата старой модели простирался далеко в ультразвуковую область и доставлял немало хлопот тем, у кого имелись ультразвуковые датчики. Современные мелодичные телефонные звонки менее насыщены высокими частотами и меньше беспокоят ультразвуковые системы.
Трубы отопления и воздушного снабжения
Подобно духовому инструменту, звучащему в доступном диапазоне, трубы отопления и пневматических устройста могут под давлением дать течь и "зазвучать" в ультразвуковом диапазоне частот. Частота такой "ноты" может интерферировать с рабочей частотой ультразвукового датчика. Если нет способа быстрого обнаружения подобных утечек, то ультразвуковые датчики лучше не устанавливать вблизи воздушно-паровых труб.
Границы допустимой скорости движения воздуха
Когда мы с вами обсуждали пригодность радарных ультразвуковых устройств для систем сигнализации, уже говорилось, что радары могут работать на сквозняках из-за нулевого суммирования скоростей сигнала и эха. Это верно и для конвекционных потоков воздуха от систем отопления. Однако есть границы приспосабливаемости датчика к скорости движения воздух И чем ближе к ним скорость, тем выше вероятность ложных тревог. Причина их здесь очевидна. Выход из подобной ситуации один - правильно установить датчик. Если иного места, кроме как над батарей отопления, нет, ультразвуковой детектор лучше не ставить.
Сочетания сигнализационных датчиков
Ультразвуковой датчик имеет столько преимуществ что, несмотря на указанные недостатки, некоторые пользователи тем не менее, стремятся использовать его, сгладив отрицательные моменты. Так родилась идея сочетаний сигнализационных сисстем. В них ультразвуковой датчик сочетается, например, с микроволновыми радарами таким образом, что при нарушении пространства в зоне риска срабатывают оба датчика. А ультразвуковой датчик сработает в потоке горячего воздуха, микроволновый радар не подтвердит этого сигнала и, таким образом, не позволит включиться сигналу тревоги. Подобные двойные сочетания подробно рассматриваются в главе 19.
Запатентованные ультразвуковые устройства
Фирм, производящих системы сигнализации, так много, что выбрать из этого моря техники "рекомендуемые автором" устройства - задача крайне тяжелая. Поэтому ниже описываются либо классические варианты воплощения рассмотрения технических принципов, либо устройства, которые мне знакомы технических принципов, либо устройства, которые мне знакомы как конструктору или пользователю.