Как постепенно дошли люди до настоящей арифметики с таблицей
Как постепенно дошли люди до настоящей арифметики с таблицей читать книгу онлайн
В тексте используется дореволюционная орфография. Если у вас не отображаются символы «ять» и другие, установите шрифт Palatino Linotype, или какой?нибудь свободный шрифт с их поддержкой
ВикитекаВсякому, кто любитъ свой предметъ, бываетъ интересно знать, какъ онъ начался, какимъ путемъ онъ развивался, и какъ онъ вылился въ свою посл?днюю форму. Въ этой книжк? изложена исторія ари?метики, и очерки ея назначены для т?хъ, кто чувствуетъ расположеніе къ математик?. Юнымъ математикамъ я прежде всего назначаю свой трудъ. Онъ же можетъ пригодиться и для педагога: для учителя крайне важно, чтобы расширился его кругозоръ, чтобы онъ могъ критически отнестись къ настоящему положенію преподаванія, и чтобы историческія данныя оживили обученіе и осв?тили его.
Въ Германіи им?ется масса сочиненій по исторіи математики; очевидно, они нужны и полезны. Пусть же и въ Россіи мой небольшой трудъ сослужитъ свою скромную службу.
О первомъ изданіи этой книжки данъ отзывъ въ «В?стник? воспитанія» I, 1908 г. и въ «В?cтник? опытной физики и элементарной математики», № 445. Она названа «интересной», «просто, ясно и кратко написанной».
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Вотъ способъ Штейнмеца (XVI в.). Примѣръ:
Шестью семь 42, такъ и пишемъ; пятью семь 35, пишемъ 5 десятков подъ 4 десятками, а три сотни вверху подъ сотнями, потому что там мѣсто есть свободное; четырежды семь 28, пишемъ 8 сотенъ подъ 3-мя, а двѣ тысячи на свободном мѣстѣ тысячъ въ верхней строкѣ. Вообще стараемся писать цифры какъ можно выше, гдѣ только есть свободное мѣсто для извѣстнаго разряда. Отдѣльныя произведенія располагаются, какъ видимъ, строками, которыя, чѣмъ ниже, все короче, и получается фигура, похожая на треугольникъ, такъ что и самый способъ носитъ названіе треугольника. Послѣдніе его слѣды встрѣчаются въ учебникахъ еще въ XVII столѣтіи.
11. Умноженіе треугольникомъ имѣетъ не одну форму, а нѣсколько, въ зависимости отъ того, начинать ли дѣйствіе съ высшихъ разрядовъ или низшихъ, или даже какихъ-нибудь промежуточныхъ, писать ли цифры какъ можно выше или какъ можно ниже. Если начинать умноженіе съ высшихъ разрядовъ, то образуется такая фигура:
12. По двѣнадцатому способу умноженіе треугольникомъ начинается съ какого-нибудь средняго разряда. Конечно, зто безразлично для произведенія, если только мы не собъемся въ порядкѣ цифръ и не пропустимъ чего-нибудь и не возьмемъ лишняго. Умножимъ сперва 5 дес. на 97, потомъ 4 сотни и, наконецъ, 6 единицъ.
Треугольникъ можно бы повернуть основаніемъ внизъ и вершиной вверхъ. Тогда фигура получится красивѣе. Особенно она хороша при длинныхъ многозначныхъ числахъ, когда очертаніе треугольника выдѣляется яснѣе.
13. Стоило только математикамъ попасть на одну геометрическую фигуру, на треугольникъ, и они принялись изобрѣтать всевозможныя формы: уголъ, ромбъ и т. д. Наперерывъ, одинъ передъ другимъ, школьные педагоги въ Германіи и Италіи ХVІ—XVII вѣка стали предлагать хитроумные, фигурные способы, въ которыхъ не имѣлось въ виду удобства, а требовалось только представить что-нибудь новое и замысловатое. Нѣкоторые педагоги получили даже своеобразную извѣстность въ этомъ направленіи. Такъ итальянецъ Тарталіа училъ въ своей школѣ 8 способамъ; столькимъ же училъ и Лука-де-Бурго; но вычислять по нимъ они своихъ учениковъ не заставляли, кромѣ одного способа или двухъ, и приводили остальные только по установившемуся обычаю или изъ хвастовства.
Расположеніе угломъ достигалось благодаря тому, что произведеніе простыхъ единицъ отодвигалось вправо, а остальные разряды писались симметрично вверху и внизу. Вотъ форма угла при умноженіи 456 на 97.
Первое произведеніе 36 составилось изъ множителей 4 и 9, второе — изъ 5 и 9, третье — изъ 6 и 9. Такимъ образомъ, мы помножили на десятки и начали дѣйствіе въ этомъ случаѣ съ сотенъ множимаго; далѣе умножаемъ на единицы, но ведемъ уже въ обратномъ порядкѣ, именно, начинаемъ съ единицъ множимаго и постепенно добираемся до его сотенъ.
14. Четырнадцатый способъ—ромба. Онъ еще замысловатѣе, чѣмъ предыдущіе. Нужна особенная внимательность, да и знаніе секрета, какъ составлять ромбъ. Если помножить 456 на 397, то ромбъ можетъ получиться слѣдующимъ путемъ. Вверху пишется произведеніе 4 сотенъ на 7 единицъ, подъ нимъ произведеиіе 5 десятковъ на 3 сотни и на 7 единицъ; въ длинной строкѣ помѣщается 4 с. × 3 с., 5 дес. × 9 дес. и 6 ед. × 7 ед.; далѣе располагаются и остальныя произведенія. Все это очень сбивчиво и неудобно, даетъ массу ошибокъ въ вычисленіи, которыя найти потомъ такъ нелегко, что лучше все бросить и сдѣлать снова. Съ непривычки дѣло долго не клеится, отвѣта не выходитъ, но, зато, въ концѣ ученикъ имѣетъ право похвастать: у него получился ромбъ.
15. До сихъ поръ мы подписывали отдѣльныя произведенія внизу подъ множимымъ и множителемъ, и на это, конечно, у насъ была причина, потому что всѣ люди начинаютъ писать съ верхней стороны листа и постепенно спускаются книзу, гдѣ мѣсто свободное, неисписанное. Но отвѣтъ получится одинаково вѣрный и въ томъ случаѣ, если, не жалѣя бумаги, мы начнемъ дѣйствіе пониже и оставимъ мѣсто для отдѣльныхъ произведеній выше производителей. Получится у насъ такъ:
Способъ этотъ указалъ Глареанъ въ ХIІ в. Вычисленіе начинается справа, съ низшихъ разрядовъ; отвѣтъ въ самомъ низу.
16. Шестнадцатый способъ очень сходенъ съ предыдущимъ и является его предшественникомъ по времени, такъ какъ образовался въ XV вѣкѣ. Его даетъ ученый арабъ Алькальцади изъ Андалузіи Особенность въ немъ та, что множимое переписывается нѣсколко разъ и притомъ столько разъ, сколько цифръ во множителѣ. И еще есть особенность: множитель не стоитъ подъ множимымъ, а располагается выше его; кромѣ того, отдѣльныя произведенія разсѣяны по разнымъ строкамъ.
Множимое, повидимому, передвигается за тѣмъ, чтобы не сбиться, какой разрядъ множить на какой. Впрочемъ, выгоды отъ этого передвиженія особенной не представляется.
17. Въ высшей степени искусственная запись встрѣчается у Баскары, индусскаго автора, жившаго въ XII вѣкѣ. Это та же рѣшетка, что и въ 5 способѣ, но только съ полными цифрами, безъ всякаго пропуска и сокращенія. У итальянцевъ она называлась «gelosia», по образцу фигурныхъ рѣшетокъ, бывшихъ въ окнахъ средневѣковыхъ теремовъ.
Множимое 456 мы пишемъ вверху, множителя 97 съ лѣвой стороны. Каждый разрядъ числа 456 множится на каждый разрядъ 97-ми. Всего образуется 6 отдѣльныхъ произведеній. Ихъ мы пишемъ полностью по клѣткамъ, такъ, чтобы всякое произведеніе стояло противъ тѣхъ разрядовъ, отъ которыхъ оно получилось; напримѣръ, шестью семь 42, ставимъ это число подъ 6-ю и притомъ въ верхней строкѣ, потому что множитель 7 стоитъ въ этой строкѣ съ лѣвой ея стороны, 2 помѣщаемъ въ верхнемъ правомъ углу клѣтки, а 4 десятка въ нижнемъ лѣвомъ. Такъ же ведемъ дѣйствіе и съ остальными разрядами. Чтобы получить отвѣтъ, стоитъ только сложить числа въ діагональномъ порядкѣ наискось: 2 единицы сносимъ, 5+4+4 = 13 десятковъ, изъ нихъ 3 пишемъ; 8+3+5+5+1 = 22 сотни; 2 пишемъ; тысячъ будетъ 2+6+4+2=14, 4 пишемъ и, наконецъ, десятковъ тысячъ 3+1, всего 4. Искомое произведеніе выразится пятью цифрами: 44232. Способъ этотъ, какъ видно, очень сложный, фигурный и сбивчивый. Надо твердо помнить и хорошо привыкнуть къ тому, какъ чертится рѣшетка, какъ пишутся производители, гдѣ помѣщаются отдѣльныя произведенія, и какъ читается отвѣтъ; стоитъ только немного не остеречься, забыть, и тогда всѣ разряды перепутываются, и никакъ нельзя будетъ отличить, гдѣ единицы, гдѣ десятки, и что складывать съ чѣмъ. Вообще это вовсе не дѣловой способъ и не школьный, а скорѣе плодъ математической изобрѣтательности и развлеченіе въ математикѣ, которая въ средніе вѣка была особенно суха и недоступна, а подобныя выдумки ее оживляли.
18. Арабъ Альнасави (XI в.) училъ умножать еще болѣе чуждымъ для насъ пріемомъ. Онъ тоже не допускалъ устнаго счета и тоже подписывалъ всѣ цифры сполна, но сверхъ того и въ сложеніи у него было отличіе, потому что отдѣльные разряды складывались не въ концѣ всего дѣйствія, а постепенно, по мѣрѣ того, какъ они получались.
Множитель 97 пишется надъ множимымъ 456 такъ, что его высшій разрядъ, 9 десятковъ, стоитъ надъ простыми единицами числа 456. Вычисленіе начинается слѣва. 4×9 = 36, пишемъ 6 надъ четырьмя, а 3 рядомъ налѣво; 5×9=45, изъ нихъ 5 пишемъ рядомъ съ 6-ю, а 4 не подписываемъ надъ 6-ю, какъ это дѣлали въ способѣ треугольника, но прибавляемъ къ 6-ти, будетъ 10, прибавляемъ къ 30, будетъ 40, эти цифры помѣщаемъ надъ 36-ю. Ведемъ умноженiе далѣе: 6×9-= 54, изъ этого 4 пишемъ надъ 9-ю, потому что нижнее мѣсто занято, а 5 прибавляемъ къ 5-ти, получится 10, нуль пишемъ надъ пятью, единицу—надъ нулемъ, именно тѣмъ нулемъ, который принадлежитъ числу 40. Такимъ-то образомъ сложеніе идетъ рука объ руку съ умноженіемъ, и когда всѣ умноженія окончатся, то окончится и сложеніе, и отвѣтъ представится самыми высшими цифрами въ каждомъ вертикальномъ столбцѣ. Какъ видно, Альнасави допускаетъ особенность и въ множимомъ, именно онъ его еще разъ подвигаетъ и не только горизонтально, но такъ, что крайній разрядъ переставляется въ слѣдующую высшую строчку. Цѣль перемѣщенія та, чтобы единицы множимаго всегда приходились подъ тѣмъ разрядомъ множителя, на какой умножаемъ.