-->

Вселенная работает как часы. Лаплас. Небесная механика.

На нашем литературном портале можно бесплатно читать книгу Вселенная работает как часы. Лаплас. Небесная механика., Касадо Карлос Мадрид-- . Жанр: Научпоп / Физика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Вселенная работает как часы. Лаплас. Небесная механика.
Название: Вселенная работает как часы. Лаплас. Небесная механика.
Дата добавления: 16 январь 2020
Количество просмотров: 281
Читать онлайн

Вселенная работает как часы. Лаплас. Небесная механика. читать книгу онлайн

Вселенная работает как часы. Лаплас. Небесная механика. - читать бесплатно онлайн , автор Касадо Карлос Мадрид
Пьер-Симон де Лаплас существенно повлиял на развитие науки и техники в течение XIX века. Он спроектировал научные учреждения новой послереволюционной Франции, и именно его подпись стоит под декретом, который сделал обязательным использование десятичной метрической системы. Этот ученый придал физике Ньютона прочный математический каркас и систематизировал разрозненные результаты зарождающейся дисциплины о теории вероятностей. Моделирование самых различных аспектов действительности убедило Лапласа в том, что все в нашей жизни предопределено: спонтанность и свободная воля, — утверждал он, — всего лишь иллюзия.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 2 3 4 5 6 7 8 9 10 ... 31 ВПЕРЕД
Перейти на страницу:
ЛЕОНАРД ЭЙЛЕР

«Читайте, читайте Эйлера, он — наш общий учитель». Эти слова Лапласа воздают должное Леонарду Эйлеру (1707- 1783). Сын пастора-кальвиниста, этот швейцарский математик, без сомнения, был самым продуктивным среди своих современников. Его работы лежат в основе сотен математических трудов и многочисленных учебников по исчислению, в которых и сегодня мы увидим введенное Эйлером определение функций с помощью f(x). Часто говорят, и не без оснований, что все учебники по математике являются копиями Эйлера или копиями копий Эйлера.

Ученый легко совершал довольно сложные математические расчеты. Несмотря на полную слепоту, которой он страдал в течение последних 17 лет жизни, Эйлер продолжил плодотворно работать в прежнем ритме благодаря своей исключительной памяти (например, он знал наизусть «Энеиду»).

Вселенная работает как часы. Лаплас. Небесная механика. - img_2.jpg
Заурядный философ

Зато талант Эйлера в философии был скорее посредственным. Вольтер высмеял его «Письма к немецкой принцессе о разных физических и философских материях» перед Фридрихом II Великим, хотя этот сборник представлял собой своеобразную научно-популярную энциклопедию. Однако насмешки Вольтера не уменьшили страсть Эйлера к философским дискуссиям. Однажды он в присутствии Екатерины II оскорбил Дени Дидро, обратившись к нему следующим образом: «Месье,

(а + bn)/n = x,

следовательно, Бог существует. Возразите!» Если верить этому сомнительному анекдоту, Дидро не стал вступать в спор и покинул зал. Эйлер работал в Берлинской академии и Академии наук в Санкт-Петербурге, он прожил счастливую семейную жизнь, окруженный своими тремя детьми. Седьмого сентября 1783 года, после обсуждения ежедневных забот, швейцарский гений «перестал считать и жить», как выразился Кондорсе. Его уравнение считается самым прекрасным в истории математики, поскольку оно объединяет ее фундаментальные числа: е+1 = 0.

В дифференциальном уравнении главной неизвестной является скорость изменения величины, то есть его дифференциал, или производная. Дифференциалы как производные одной величины представляют изменение значения функции — увеличение, уменьшение, постоянство. Например, ускорение описывает изменение скорости движения, так как это частное дифференциалов скорости и времени. Иными словами, ускорение является производной скорости по отношению ко времени, и исходя из этого оно представляет собой изменение скорости по отношению ко времени.

Ньютон — одновременно с Готфридом Вильгельмом Лейбницем (1646-1716) — придумал дифференциальное исчисление (или теорию флюксий, как он его называл) и применил его к своим исчислениям. Итак, чтобы представить законы астрономии и механики в знаменитой работе Philosophiae naturalis principia mathematica {«Математические начала натуральной философии», 1687 год), Ньютон сохранил терминологию, унаследованную от Евклида и греков. Для расчета производной он определил касательные к кривой и вычислил интеграл (операция, обратная дифференцированию), чтобы определить площадь поверхности под кривой. Таким образом, если вы откроете «Начала» Ньютона, то, вероятно, будете разочарованы: это произведение, считающееся символическим по отношению к научной революции, практически не поддается расшифровке. В действительности именно Лейбницу мы обязаны символами, обозначающими слова «дифференцировать» (δ) и «интегрировать» (∫), а также правилами, регулирующими эту нотацию, хорошо известными каждому студенту математического факультета.

Описание подробностей распространения «Начал» потребовало бы много места. Отметим лишь, что идеи Ньютона привлекали все больше и больше последователей благодаря труду таких авторов, как Пьер Вариньон (1654-1722), который был другом Лейбница и преподавателем в Париже. Ученые стремились сформулировать в виде уравнений механические концепции и геометрические построения Ньютона, используя для этого такой инструмент, как дифференциальное исчисление в версии Лейбница, то есть исчисление бесконечно малых. Эти авторы оказали Ньютону огромную услугу, предложив для его теории математически вразумительную форму. Одновременно такие философы, как Вольтер и его подруга маркиза Эмили дю Шатле (1706-1749), успешно содействовали тому, чтобы донести труды Ньютона до широкой европейской публики, далекой от науки.

Законы Ньютона в конце концов нашли свое выражение с помощью аналитического языка дифференциальных уравнений. Уравнения пришли на смену графикам. Любопытно, что заботу переводить натуральную философию Ньютона с геометрического языка, используемого в это время, на новый аналитический язык (в известном нам виде) взяли на себя не британские математики. У истоков этого начинания стояли ученые с континента, в частности из Парижа, Берлина и Санкт-Петербурга. Соперничество Ньютона и Лейбница относительно авторства метода исчисления переросло в антипатию и открытую вражду между их сторонниками и проложило пропасть между островными и континентальными математиками. Первые последователи Ньютона упорно добивались использования исключительно геометрических методов, что впоследствии вызвало некоторое замедление развития британской науки.

Постепенный переход от геометрической механики Ньютона к аналитическим методам стал возможен только благодаря работе целого поколения математиков континентальной Европы, особенно Эйлера и Жозефа Луи Лагранжа. Это была великая математическая эпоха, в течение которой анализ стал основной дисциплиной: дифференциальное исчисление и интегралы, теория дифференциальных уравнений испытали резкий подъем.

Достоинство хорошо составленного (математического) языка в том, чтобы его упрощенное определение часто становилось источником глубоких теорий.

Пьер-Симон де Лаплас

НЬЮТОН И ПЕРВОЕ ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ

Самым известным дифференциальным уравнением, безусловно, является то, которым мы обязаны Исааку Ньютону (1642-1727): «Сила равна массе, умноженной на ускорение».

Это записывается как F= m ∙ а, где

a = dv/dt

(ускорение — это частное дифференциалов скорости и времени, то есть производная скорости по времени).

Но удивительно, что сам Ньютон никогда не приводил этого уравнения. Его второй закон имеет более общую формулировку: «Изменение количества движения пропорционально приложенной движущей силе». В современном виде это:

Вселенная работает как часы. Лаплас. Небесная механика. - img_3.jpg

F = d/dt(m ∙ v).

Любая сила, воздействующая на тело, вызывает изменение движения. Предположим, что масса тела постоянна (тогда можно извлечь m из производной), мы находим известное уравнение: F= m ∙ а. Эта формула в первый раз появилась в математическом трактате под названием Phoronomia («Форономия»), опубликованном в 1716 году Якобом Германом (1678- 1733), который опирался на практичный способ записи Лейбница. Формула получила известность благодаря Эйлеру, который привел ее в своем труде«Механика, или Наука о движении, изложенная аналитически» (1736). В течение большей половины XVIII века математики использовали более общую формулу, предложенную д'Аламбером в «Трактате о динамике» (1743), которая, естественно, носит имя ученого, — принцип д'Аламбера.

Аналитическая механика представляла собой значительный прогресс по сравнению с механикой Ньютона. Чем дальше математика отходила от геометрических методов к аналитическим, тем возможнее было изучить физические феномены с помощью дифференциальных уравнений, их описывающих.

1 2 3 4 5 6 7 8 9 10 ... 31 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название