Виролюция. Важнейшая книга об эволюции после «Эгоистичного гена» Ричарда Докинза
Виролюция. Важнейшая книга об эволюции после «Эгоистичного гена» Ричарда Докинза читать книгу онлайн
Основная идея этой книги шокирует. Все живое на планете, в том числе люди, живут в симбиозе с вирусами, эволюционируют вместе с ними и благодаря им… выживают. Первая реакция читателя: этого не может быть! Но, оказывается, может… Вирусы, их производные и тесно связанные с ними структуры составляют как минимум сорок три процента человеческого генома, что заставляет сделать вывод: естественный отбор у человека и его предков происходил в партнерстве с сотнями вирусов. Но как вирусы встроились в человеческий геном? Как естественный отбор работает на уровне вирус-носитель? Как взаимодействуют движущие силы эволюции — мутации, симбиогенез, гибридизация и эпигенетика? Об этом — логичный, обоснованный научно и подкрепленный экспериментальными данными рассказ Фрэнка Райана.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Одно из наиболее распространенных наследственных заболеваний зрения — болезнь Лебера, или наследственная атрофия зрительного нерва. Мужчин она поражает в четыре раза чаще, чем женщин. У пораженных ею людей в детстве зрение нормальное, но в подростковом возрасте либо чуть позже вдруг возникает странное замутнение посреди поля зрения. Обычно такое начинается на одном глазу, но быстро распространяется и на второй. Вскоре зрение больного серьезно ухудшается, вплоть до фактической слепоты, а при обследовании врачи замечают странное просветление диска — области в центре глазного яблока, где к нему подсоединяется глазной нерв. Подоплека этого заболевания долго оставалось загадкой, пока в 1988 году не обнаружили: болезнь вызвана мутациями митохондриальных генов. Хотя около двух десятков мутаций связаны с этой болезнью, за 85–90 процентов случаев ответственны всего лишь три мутации. Почему эти мутации воздействуют именно на зрительный нерв, в точности не известно. Возможно, митохондрии неверно программируют апоптоз клеток в зрительном нерве, и это вызывает его дегенерацию.
Поскольку болезнь Лебера наследуется только от матери и генетическая подоплека ее сложна, иногда считали, что эта болезнь связана с дефектами Х-хромосомы, то есть что дефектный ген переносится материнской Х-хромосомой, — но генетика заболевания вовсе не следует законам Менделя. Она определяется передачей цитоплазмы материнской яйцеклетки, что и влечет иной характер наследования. Чтобы понять его, а также то, каким образом дефекты митохондриального генома вызывают заболевания, рассмотрим подробнее происходящее на генетическом уровне.
Геном митохондрии очень мал по сравнению с ядерным геномом, и потому было бы логичным предположить редкость митохондриальных наследственных заболеваний по сравнению с ядерными — но это не так. Они встречаются довольно часто, и причиной тому бактериальная природа митохондрий. Среди унаследованных от наших предков-позвоночных ядерных генов лишь малый процент участвует в кодировании белков, и потому мутации ядерной ДНК далеко не всегда приводят к заболеваниям. С другой стороны, большинство митохондриальных ДНК кодируют функционально важные белки, и потому мутации этих ДНК с гораздо большей вероятностью приводят к болезни. К этому следует добавить большую склонность бактериальных генов к мутациям — мутации в митохондриальных ДНК случаются в десять — двадцать раз чаще, чем в ядерных. А вдобавок митохондриальные заболевания могут возникать и в силу мутаций части митохондриального генома, оказавшейся в ядре. В дополнение ко всему этому митохондрии делятся куда чаще, чем сама клетка, а митохондрий в клетке много. Естественно, мутации возникают куда чаще, чем в таком же по размеру наборе ядерных генов. Поскольку митохондриальные мутации могут возникать и спустя много времени после рождения ребенка, налицо ситуация, когда в одних и тех же клетках ткани бывают и нормальные, и мутировавшие митохондрии. Не правда ли, яркий пример того, как разница в происхождении и эволюционном развитии — в нашем случае факт симбиоза с некогда свободно существовавшей бактерией — сказывается на возникновении и развитии болезни, несмотря на то что симбиоз продолжается уже колоссальное время — миллиард лет? Генетическую подоплеку митохондриальных заболеваний невозможно понять, не поняв симбиотической природы эволюции митохондрий.
Митохондриальные заболевания возникают в семьях из поколения в поколение, бывают всевозможных степеней тяжести — от легких до фатальных, — а проявление болезни зависит от пораженного органа и степени его потребности в кислороде. Надеюсь, теперь читатель поймет, отчего столь сложно такие заболевания диагностировать, в особенности у новорожденных детей и в младенчестве, несмотря на обилие митохондриальных заболеваний. Приблизительно один новорожденный ребенок из семи тысяч шестисот страдает от них. Они составляют значительную часть того, что доктора именуют «врожденными пороками метаболизма». Ведущие к тяжелым заболеваниям мутации были идентифицированы у тридцати из тридцати семи митохондриальных генов и более чем у трех десятков ядерных генов митохондриального происхождения. У больных детей развиваются и прогрессируют неврологические заболевания, сопровождаемые различными изменениями в органах и тканях с высоким потреблением кислорода: мозга, сердца, печени и скелетных мышц. Болезни эти включают смертельно опасную молочную ацидемию (болезнь Лейха), кардиомиопатию с катарактой (синдром Сенджерса) и другие серьезные расстройства метаболизма. Поражены могут быть печень, сердце, почки, кишечник, эндокринные железы и кровь. Из-за этих болезней происходит дегенерация мозга и нервной системы.
Широко известный пример митохондриального заболевания, вызванного мутациями содержащихся в ядре митохондриальных генов, — атаксия Фридрайха. Ее вызывает мутировавший ядерный ген FXN, кодирующий митохондриальный протеин фратаксин, который делает возможным удаление железа из митохондрии; потому в случае отсутствия фратаксина либо его дефектности митохондрия накапливает железо, из-за чего сильно повреждается свободными радикалами и прекращает функционировать. По мере накопления клинических данных доктора заподозрили: дефекты митохондрий могут играть значительную роль в происхождении многих болезней — таких, как сахарный диабет, рак, инфаркт, остеопороз, болезнь Альцгеймера, болезнь Паркинсона, инсульт — и, возможно, в самом процессе старения. Генетики уже тестируют генную терапию наследственной атрофии зрительного нерва (болезни Лебера). Несомненно, со временем будут разработаны новые эффективные виды генной терапии митохондриальных заболеваний, и для разработки их потребуется учитывать симбиотическое эволюционное происхождение митохондрий, а также сложную генетическую и молекулярную динамику, возникающую как следствие такого происхождения митохондрий.
Ранее я вкратце описал роль HERV, их продуктов и зависящих от них элементов в человеческой эволюции, генетике, эмбриологии и поддержании нормального метаболизма. Теперь же, полагаясь на эти знания, приступим к изучению связи эндогенных ретровирусов с наследственными заболеваниями.
Как было показано ранее в это книге, эндогенные ретро-вирусы, несомненно, внесли важнейший вклад в человеческую эволюцию. Однако и после включения в наш геном они остаются потенциально вредоносными. Что сулит нам сосуществование с множеством уже развитых, функциональных чужеродных генов и вирусных LTR, этих мощных регуляторов генной активности? Конечно, мы не выбирали наших сожителей. Вирусы едва ли дожидаются, пока естественный отбор помашет им ручкой и скажет: «Включись в геном, ты полезен». Симбиоз с вирусами происходит по их инициативе, диктуется их стратегией выживания.
Во время недавнего моего выступления перед группой биотехнологов слушатель спросил меня: «Какая часть из всех этих угнездившихся в геноме вирусов активна?»
Я затруднился с ответом. Прежде всего потому, что наши знания о вкладе HERV в нормальное функционирование человеческого генома весьма ограничены. Но есть и другие, не менее весомые причины. Особенности бактериального в своей сущности митохондриального генома наталкивают на мысль, что и вирусные части человеческого ядерного генома могут вести себя вовсе не так, как части, доставшиеся нам от предков-позвоночных. Они ведь и структурно отличаются: вирусные гены не состоят из разделенных интронами экзонов, что свойственно генам позвоночных. Имеются и другие отличия. Мутация — стоп-кодон — в ключевой последовательности гена позвоночных делает ген неактивным. То же самое случается и в случае мутации в ключевой последовательности вирусных генов, но, как показали упоминавшиеся выше исследования Вайса, вирусный ген либо целая область env вирусного генома могут быть реактивированы при взаимодействии с другим вирусом.
Подобное взаимодействие, приводящее к созданию нового голобионтического вирусного генома вследствие рекомбинации нескольких отдельных вирусных геномов, по сути, проявление симбиоза между вирусами. Свойство вирусов объединяться важно для медицины — обычно так и возникают новые штаммы гриппа, вызывающие пандемии. Например, анализ, проведенный Канадской национальной микробиологической лабораторией в Виннипеге и Центром по контролю и профилактике заболеваний США в Атланте, показал: вызвавший эпидемию апреля 2009 года вирус свиного гриппа — это сборная солянка из частей генома вирусов гриппа человека, птиц и свиней. Причем эти исходные вирусы встречаются в разных частях света: в Северной Америке, Европе и Азии. Хотя в точности происхождение вируса свиного гриппа не выяснено, вполне возможно, что он развился в геноме свиней посредством голобионтического слияния геномов трех разных вирусов гриппа. Слияния такого рода — мощнейший из известных симбиогенетических механизмов, способный за очень короткое время произвести новую смертоносную заразу. Потому и не слишком удивительно мнение экспертов, считающих, что новому вирусу присуща «такая сложность, какой до сих пор мы понять не можем».