Когда фотон встречает электрон. Фейнман. Квантовая электродинамика
Когда фотон встречает электрон. Фейнман. Квантовая электродинамика читать книгу онлайн
Ричард Фейнман считается не только одним из самых значительных физиков XX века, но и одной из самых завораживающих и уникальных фигур современной науки. Этот ученый внес огромный вклад в изучение квантовой электродинамики - основной области физики, исследующей взаимодействие излучения с веществом, а также электромагнитные взаимодействия заряженных частиц. Кроме того, он широко известен как преподаватель и популяризатор науки. Яркая личность Фейнмана и его сокрушительные суждения вызывали как восхищение, так и враждебность, но несомненно одно: современная физика не была бы такой, какой она является сегодня, без участия этого удивительного человека. Прим. OCR: Врезки текста выделены жирным шрифтом. Символ "корень квадратный" заменен в тексте SQRT().
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Фейнман сделал вывод, что жидкость в своем полном объеме не может начать вращаться, но маленькие отдельные части, порядка нескольких атомов в диаметре, могут начать ротацию вокруг своей собственной центральной зоны. Речь идет о ротонах Ландау.
Такая математическая виртуозность впечатляет, но особо ценно в работе Фейнмана то, что он сделал очевидной пользу вариационного метода, который, начиная с этого времени, употребляется для решения основных проблем, связанных с изучением материи.
Глава 5
От атомов к кваркам
В 1950-е годы физика сталкивается с новой проблемой: необходимо навести порядок среди огромного количества новых частиц, которые продолжают открывать ускорители. Другая задача: изучить взаимодействия между ними, в частности слабое взаимодействие, отвечающее за распад нейтрона. После отступления в сторону, в физику конденсированного состояния, Фейнман снова готов заняться исследованиями в своей любимой области. Чтобы это сделать, ему необходим важный союзник — Марри Гелл-Ман.
Журнал Nature опубликовал 20 декабря 1947 года две фотографии, представляющие два явления, названные «V», ввиду их характерной формы. Такие явления происходят, например, когда нейтральная частица, без заряда (которая не оставляет никакого следа в пузырьковой камере), распадается на две частицы с противоположными зарядами (оставляющие следы). Это то, что мы видим на первом фото. Второе показывает траекторию заряженной частицы, которая в определенный момент резко меняет направление. Опытному физику это говорило о наличии заряженной частицы, распавшейся на две: с одной стороны, нейтральная частица (которая не оставила фиксируемого следа своего движения) и, с другой стороны, частица с таким же зарядом, но с массой, отличной от массы главной частицы (откуда происходит изменение ее траектории). Что же именно вело себя таким образом?
Частица была названа «Л» («лямбда»), а что привлекало внимание, так это ее более долгая жизнь, чем можно было ожидать. В среднем срок жизни частиц, которые участвуют в сильном взаимодействии, составляет 10-24 секунды, а срок жизни частицы A составил 10-10 секунд. И, что еще интересней, это была единственная частица, которая вела себя подобным образом. Это становится настолько важной темой, что Международный конгресс о космическом излучении 1953 года (проходивший с 5 по 11 июля во французском городе Баньер-де-Бигор) был почти полностью посвящен новым частицам, которые уже окрестили «странными». Общий ход мысли на данном форуме был отражен на первой странице его протокола: «Частицы, обсуждаемые на этом конгрессе, нельзя назвать вымыслом, и любая аналогия с частицами, существующими в природе, не случайна». Для четырех сотен присутствующих физиков все происходящее было очень важно. Существование «странных» частиц было просто возмутительным. «Все равно как если бы природа позволила себе фантазировать, как если бы новые явления смогли существовать, не участвуя на самом деле в мировом порядке»,— прокомментировал ситуацию француз Мишель Крозон. В конце конгресса молодой физик Марри Гелл-Ман, из университета Чикаго, представил концепцию странности, нового свойства субатомных частиц. Что она из себя представляет? И, что еще более важно, как ее встроить в существующие схемы?
Марри Гелл-Ман
Родившийся 15 сентября 1929 года в Нью-Йорке, Марри Гелл-Ман в возрасте 14 лет был назван «самым прилежным учеником» своими же товарищами по школе Columbia Grammar, расположенной в Верхнем Вест- Сайде Манхэттена. С самого юного возраста будущий ученый проявлял большой интерес к лингвистике, настолько сильный, что со временем стал экспертом по фонетике. Однажды Фейнман репетировал несколько строчек на самоанском языке для роли вождя племени в музыкальной комедии «Южный Тихий океан», которую они готовили в Калтехе. При этом он как-то сказал своему другу: «Марри будет единственным, кто знает, что произношение у меня неважное».
Король Швеции Густав VI Адольф приветствует Марри Гелл-Мана (справа) после вручения ему Нобелевской премии по физике в 1969 году.
Именно в университете Гелл-Ман начинает видеть свое призвание в изучении физики. Поступить в университет ему оказалось непросто, несмотря на то что в школе Гелл-Ман считался вундеркиндом: Йельский университет принял его только на математическое отделение, Гарвард — лишь при условии полной оплаты, а Принстон решительно ему отказал. При таких обстоятельствах он решает учиться в МТИ, куда и поступает в 1948 году, в эпоху, когда квантовая электродинамика становится популярной. Его наставник, Виктор Вайскопф, сказал ему, что будущее принадлежит Фейнману, поэтому Гелл-Ман начинает кропотливо изучать все его статьи. В результате изучения предмета у него складывается сугубо личное видение ученого мира КЭД: Фейнмана он считает прямолинейным, Швингер кажется ему пустым и чопорным, а Дайсон — ординарным и небрежным. В 21 год, после получения своей докторской степени, он уезжает работать с Ферми в Чикагский университет. В это время исследователи физики частиц должны были навести порядок в результатах, предоставленных ускорителями частиц: по мере того как они продвигались в своей работе, появлялись все новые частицы. Положение в данной области довольно запутанное: в журнале Review of Modern Physics финн Мэтт Росс описал 41 различную частицу. Говорить об «элементарных частицах» после этого просто смешно.
Странность
Вот уже десяток лет физики думали о том, как лучше объяснить четыре фундаментальные взаимодействия природы: гравитационное, управляющее миром планет и звезд; электромагнитное взаимодействие, отвечающее за химические реакции и электрические процессы; сильное взаимодействие, которое поддерживает вместе протоны и нейтроны в атомном ядре, а также слабое взаимодействие, объясняющее бета-распад. Каждое из них играло свою четко обозначенную роль. Тем не менее ускорители начинали открывать частицы Λ в значительных количествах. Как объяснить то, что в хорошо организованном мире частиц имелась одна, за создание которой отвечает сильное взаимодействие, тогда как ее распадом, возможно, управляет слабое? Чтобы разъяснить этот момент, Гелл-Ман в 1952 году постулировал существование новой фундаментальной характеристики субатомного мира, которую он вначале назвал у. Речь шла о новом виде заряда. И именно в этом заключался революционный характер его теории: этот заряд у не вел себя как электрический заряд. В случае последнего, независимо от того, что может внезапно произойти в мире, электрический заряд сохраняется. То есть, если в начале любого процесса общий заряд системы равен нулю, то окончательный заряд тоже будет равен нулю. Как следствие, нейтрон, который является нейтральной частицей, распадается на протон (с положительным зарядом), электрон (с отрицательным зарядом) и антинейтрон (без заряда). В то же время, в случае заряда г/, Гелл-Ман настаивал на том, что он сохранялся... иногда. Его предположение, которое ученый развернул в нескольких статьях, опубликованных с августа 1953 года, заключалось в том, что у сохранялся при сильном взаимодействии, но не при слабом.
Во всех наших знаниях о фундаментальной физике не существует важной идеи, которая не носила бы имени Гелл-Мана.
Заявление Фейнмана в знак уважения к работе Гелл-Мана
Гелл-Ман представил следующий аргумент: так как у сохраняется, частицы, созданные распадом, должны появиться в виде пар частица-античастицы с зарядами, равными по значению, но с противоположными знаками. Частицы были бы постоянные, так как создание не-странных частиц противоречило бы законам сохранения, при условии, что в процессе участвует сильное взаимодействие. Но если мы имеем дело со слабым взаимодействием, ответственным за распад нейтрона, то законы сохранения не действуют и частицы смогут распадаться. Кроме того, по той же причине их средний срок жизни будет более продолжительным — именно то, что мы и наблюдаем.