-->

Софья Васильевна Ковалевская

На нашем литературном портале можно бесплатно читать книгу Софья Васильевна Ковалевская, Полубаринова-Кочина Пелагея Яковлевна-- . Жанр: Биографии и мемуары / Математика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Софья Васильевна Ковалевская
Название: Софья Васильевна Ковалевская
Дата добавления: 16 январь 2020
Количество просмотров: 216
Читать онлайн

Софья Васильевна Ковалевская читать книгу онлайн

Софья Васильевна Ковалевская - читать бесплатно онлайн , автор Полубаринова-Кочина Пелагея Яковлевна

Книга посвящена жизни и деятельности выдающегося русского математика, члена-корреспондента Петербургской академии наук Софьи Васильевны Ковалевской. Написанная академиком П.Я. Кочиной, она содержит много новых сведений, не известных ранее документов и является наиболее полной научной биографией С.В. Ковалевской.Книга рассчитана на широкий круг читателей, интересующихся развитием мировой науки.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 46 47 48 49 50 51 52 53 54 ... 86 ВПЕРЕД
Перейти на страницу:

Уравнения движения тяжелого твердого тела вокруг неподвижной точки представляют систему шести дифференциальных уравнений, в левых частях которых стоят производные по времени от искомых функций, а в правых — полиномы второй степени от этих функций. Ковалевская стала искать решение системы, аналогичной указанной, но с меньшим числом переменных. В письме Миттаг-Леффлеру от 29 декабря 1884 г. [МЛ 35] она

180

рассматривает систему трех уравнений:

Софья Васильевна Ковалевская - _0.jpg

Ковалевская говорит, что линейным преобразованием эту систему можно привести к одному из более простых типов, например к такому:

Софья Васильевна Ковалевская - _1.jpg

В частном случае

Софья Васильевна Ковалевская - _2.jpg
эта система может быть проинтегрирована с помощью эллиптических функций а (гг), a именно, общий интеграл представляется в форме линейной функции трех отношений

Софья Васильевна Ковалевская - _3.jpg

где постоянные giy g2, gs, входящие в образование а, являются произвольными. Ковалевская отмечает важное свойство полученного ею решения: оно выражается с помощью однозначных функций от переменной гг, которые имеют не более одной существенно особой точки гг = «>, а для конечных значений гг — только полюсы первого порядка. Для случая произвольных значений а, 6, с,... Ковалевская ставит вопрос:

«Может ли система х, г/, z, удовлетворяющая уравнениям (I), вообще допускать полюсы, или же только существенно особые точки, другими словами,— возможно ли удовлетворить уравнениям (I) рядами вида

Софья Васильевна Ковалевская - _4.jpg

где m — целое положительное число (или, по крайней мере, какое угодно положительное число). Легко убедиться, что это возможно только в случае m = 1 и что тогда это всегда возможно».

181

Далее Ковалевская замечает, что при произвольных

Софья Васильевна Ковалевская - _5.jpg
ряды (II) будут определены с точностью до множителя, т. е. будут содержать лишь одну произвольную постоянную. Это показывает, что общие интегралы уравнений (I) должны бы иметь еще другие особенности, кроме полюсов.

В частном случае, когда имеется соотношение atb2c = = CLzbci, еще один коэффициент рядов (II) остается неопределенным, и ряды содержат три произвольных постоянных, следовательно, как и в указанном частном случае, имеем общее решение.

Ковалевская добавляет: «Это позволяет нам сделать заключение, что в этом [т. е. частном] случае общие, интегралы будут также однозначными функциями на всей плоскости, имея только одну существенно особую точку и=°°, а для конечных значений и — только полюсы первого порядка». Она надеется, что изучение свойств однозначных функций, существование которых она доказала, «возможно, прольет свет когда-нибудь на свойства более общих функций

Софья Васильевна Ковалевская - _6.jpg

где

Софья Васильевна Ковалевская - _7.jpg
— квадратичная форма п переменных» [75, с. 106].

На рассмотренной задаче, ясно виден ход мысли Ковалевской, который привел ее к открытию нового случая вращения.

Уже в 1886 г. Ковалевская получила основные результаты по своей задаче. В этом году Парижская академия наук объявила две премии на 1888 г. по физико-математическим наукам: одну по математике на большую премию математических наук, состоящую из медали и 3000 франков, — усовершенствовать теорию алгебраических функций двух независимых переменных, и другую — на премию Бордена, состоящую из медали и 3000 франков,— усовершенствовать в каком-нибудь важном пункте теорию движения твердого тела (см. Примечание 2).

Шарль Лоран Борден был нотариусом, передавшим в 1835 г. Институту Франции ренту в 15 000 франков, которая должна была распределяться поровну между пятью академиями Франции. Темы, которые могли выдвигаться на конкурс, согласно завещанию Бордена, должны были иметь целью общественные интересы, благо человечества, прогресс науки и национальную честь.

182

Ковалевская решила представить свою работу на премию Бордена. Однако ей предстояло еще произвести огромные математические выкладки и оформить работу, В письме к Миттаг-Леффлеру, относящемуся к лету 1888 г., она говорит:

«Моя голова так теперь полна математикой, что я не могу ни думать, ни говорить о чем-нибудь другом. Я пришла к определенному результату, и к очень приятному притом, а именно, что этот случай задачи о вращении интегрируется действительно посредством ультраэл- липтических функций. Но мне еще предстоит разработать окончательные формулы, и я не знаю, успею ли я это сделать до конца месяца. Не могу не сообщить Вам несколько подробнее о своей работе. Вследствие недостатка времени буду писать очень коротко, но, пожалуйста, постарайтесь все же вникнуть в вопрос» [СК 273].

Остановимся на этой задаче и выпишем систему шести уравнений движения тяжелого твердого тела вокруг неподвижной точки, состоящую из двух групп уравнений [146]:

Софья Васильевна Ковалевская - _8.jpg

Здесь X, y, z — координаты произвольной точки тела в подвижной системе координат, неизменно связанной с движущимся телом, причем начало координат помещено в неподвижной точке тела; р, q, г — составляющие вектора угловой скорости вращения тела; у, у', ч" “ направляющие косинусы вертикальной оси относительно подвижных осей (х, у, z), Далее, через М обозначается масса тела, через (х0, у0, Zo) — координаты центра его тяжести, g — ускорение силы тяжести, А, В, С —главные моменты инерции тела, т. е. выражения

Софья Васильевна Ковалевская - _9.jpg

183

Задача состоит в нахождении

Софья Васильевна Ковалевская - _10.jpg
как функций времени, если известны начальные значения их
Софья Васильевна Ковалевская - _11.jpg
в момент времени
Софья Васильевна Ковалевская - _12.jpg
При этом между
Софья Васильевна Ковалевская - _13.jpg
должно выполняться соотношение
Софья Васильевна Ковалевская - _14.jpg
Софья Васильевна Ковалевская - _15.jpg

Известно, что система уравнений (1), (2) имеет три первых интеграла:

Софья Васильевна Ковалевская - _16.jpg

Система уравнений (1), (2) автономна, т. е. время в нее входит лишь в виде dt, поэтому, разрешив уравнения (1) относительно производных и разделив почленно все уравнения на одно из них, получают пять уравнений. Теория последнего множителя позволяет найти еще один интеграл. Поэтому достаточно иметь вдобавок к (3) еще один, четвертый интеграл, чтобы получить полное решение задачи.

Были известны такие частные случаи, когда имеется четвертый интеграл — он является также алгебраическим.

1.       Случай Эйлера, когда Xo=y0=z0=0, т. е. центр тяжести совпадает с неподвижной точкой. Здесь нетрудно найти четвертый интеграл

Софья Васильевна Ковалевская - _17.jpg
Выпишем лишь один член решения, определяющий зависимость между t и q (для случая, когда B>D, где D оп-* ределено ниже) :

Софья Васильевна Ковалевская - _18.jpg

84

Функция q (t) находится обращением эллиптического интеграла (4):

Софья Васильевна Ковалевская - _19.jpg

Для риг получены аналогичные соотношения;

Софья Васильевна Ковалевская - _20.jpg
определяются из уравнений

1 ... 46 47 48 49 50 51 52 53 54 ... 86 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название