Пуанкаре
Пуанкаре читать книгу онлайн
Книга о жизни французского математика, физика-теоретика, академика Анри Пуанкаре.
ПУАНКАРЕ (Poincare) Жюль Анри (29.4.1854, Нанси, — 17.7.1912, Париж), французский математик, член Парижской АН (1887).
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Сведя воедино около тридцати своих статей и мемуаров по небесной механике, Пуанкаре как бы замкнул определенный этап своего творчества, если так можно сказать о творчестве, не прекращавшемся ни на минуту. Подобно Лапласу, он тоже обращается на первых страницах своего труда к фундаментальнейшему закону науки — закону всемирного тяготения: "Конечная цель небесной механики состоит в разрешении великого вопроса, может ли закон Ньютона, и только он один, объяснить все астрономические явления". Но интонация этого предваряющего высказывания уже несколько иная, чем у его знаменитого предшественника. Взгляды ученых на содержание и назначение небесной механики проэволюционировали вместе с этой наукой от Лапласа к Тиссерану и Пуанкаре. Тот факт, что все три классических труда по небесной механике написаны французскими авторами, свидетельствует о ведущей роли французской школы в этой области знания.
Возмутитель спокойствия
Явление большого ученого — это не только переосмысление старых проблем науки с помощью новых, оригинальных методов, это еще и новое прочтение старых, уже испытанных методов исследования под совершенно необычным углом зрения.
По мере того как все яснее становилась практическая неразрешимость большей части дифференциальных уравнений, математики постепенно меняли свое мнение о том, что понимать под их решением. Первоначально само собой разумелось, что результаты интегрирования должны представляться известными функциями. Но круг интегрируемых таким образом уравнений оставался весьма узким. Поэтому согласились считать решением всего лишь промежуточный результат на пути к нему — некое математическое выражение, стоящее под знаком интеграла. Примирились с тем, что не удается довести дело до желаемого конца и записать итог в более приемлемом виде. Вскоре и такое решение расширенного толка показалось не всегда доступной роскошью. Тогда математики, продолжая следовать по пути снижения своих требований, стали включать в понятие «решение» еще более странные математические объекты.
Еще в XVIII веке результат интегрирования дифференциального уравнения выражали порой в виде бесконечного ряда слагаемых, каждое из которых строилось с помощью известных функций по определенному правилу. Обоснованное истолкование этого метода было получено в первой половине XIX века, когда математики убедились, что такие бесконечные ряды тоже являются своеобразными функциями. Более того, каждую известную в то время функцию можно было разложить в подобный бесконечный ряд, но далеко не каждому ряду можно было сопоставить какую-либо функцию. Это наталкивало на мысль, что ряды образуют более широкий класс функций, намного перекрывающий всю совокупность алгебраических, трансцендентных и высших трансцендентных функций. Тогда естественно было искать решение дифференциального уравнения в виде бесконечного ряда, если его невозможно получить в обычных функциях.
Интегрирование дифференциальных уравнений рядами имело исключительно важное значение для небесной механики. Этот метод позволял рассчитывать координаты небесных тел на небосводе для любого момента времени, то есть удовлетворял основную насущную потребность практической астрономии. Необходимо только, чтобы полная сумма всех членов ряда была конечной величиной, несмотря на бесконечное число слагаемых. Ничего парадоксального в этом требовании не было. Например, бесконечная сумма чисел: 1/2 +1/4 +1/8+ и так далее, в которой каждое последующее слагаемое вдвое меньше предыдущего, равна в точности единице. Математики, уже много раз имевшие дело с аналогичными рядами, только составленными из функций, а не из чисел, называли их сходящимися. Слагаемые в таком бесконечном сходящемся ряду должны неуклонно уменьшаться по величине с удалением от начала ряда. Тогда для практических расчетов можно ограничиться суммой некоторого числа первых, наибольших членов ряда и получить приближенное значение решения. Вклад неучтенных, отброшенных слагаемых в общую сумму будет существенно меньшим. Так, в приведенном выше числовом ряду сумма первых трех слагаемых равна 7/8, то есть близка к единице, и только 1/8 приходится на долю бесконечной вереницы оставшихся его членов.
При таком методе абсолютно точное решение остается неизвестным, поскольку невозможно просуммировать бесконечное число слагаемых. Но астрономов-практиков вполне устраивали их приближенные расчеты. Ведь ограничения на точность были чисто техническими. Всегда можно добавить к вычисленной сумме одно-два слагаемых и тем самым еще приблизиться к истинному значению искомой величины. При желании такое уточнение можно продолжать беспредельно, сдерживает только непомерно возрастающий объем вычислений. Да и не нужны чересчур уж скрупулезные расчеты, точность которых превышает возможности астрономических приборов. А если у кого-то и были претензии к приближенным теоретическим результатам, так ведь точное решение все равно недоступно. Поэтому математики продолжали совершенствовать метод интегрирования дифференциальных уравнений рядами.
Очень многое зависело от того, каким бесконечным рядом представляется решение. Хорошо, если слагаемые достаточно быстро уменьшаются по величине с удалением от начала ряда. Тогда не приходится много считать: просуммировав несколько первых членов, можно получить нужную точность решения. Поэтому астрономы и математики самое серьезное внимание уделяли подбору рядов. Но долгое время им не везло. Во всех рядах появлялись слагаемые, в которые время входило в качестве сомножителя. При астрономических прогнозах на длительный период сомножитель этот получался большим, содержащие его слагаемые убывали очень медленно, а то и вовсе не убывали, сходимость ряда в таких случаях нарушалась или находилась под сомнением. Избавление от так называемых «вековых» членов, содержащих время сомножителем, стало самой актуальной проблемой небесной механики XIX века.
Первым добился успеха французский астроном Ш. Делоне, который в 1860 году показал, что положение Луны может быть рассчитано с помощью ряда, слагаемые которого состоят только из тригонометрических функций, без всяких «вековых» членов. В 1874 году американский астроном С. Ньюком доказал, что чисто тригонометрические ряды пригодны для вычисления положений планет. Вслед за ними Г. Хилл, А. Линдстедт, Г. Гильден, Ф. Тиссеран и другие ученые всесторонне исследовали различные способы интегрирования дифференциальных уравнений рядами, не содержащими «вековые» члены. Доведенный их коллективными усилиями до высокой степени совершенства метод рассматривался тогда как крупная победа. Астрономы и математики не могли нарадоваться на чудесные ряды, которые с успехом использовались ими во многих задачах небесной механики, например в задаче трех тел, и, казалось бы, удовлетворяли всем запросам. Но снизошедшие на них довольство и успокоение длились недолго!
Гром грянул неожиданно, когда в печати появилась работа Пуанкаре, удостоенная премии Оскара II. Полностью его исследования бесконечных рядов, используемых в небесной механике, были изложены во втором томе "Новых методов". Этот том так и озаглавлен — "Методы Ньюкома, Гильдена, Линдстедта и Болина". К величайшему изумлению астрономов, Пуанкаре безукоризненными математическими выкладками доказывает, что предложенные этими учеными ряды, составлявшие предмет всеобщей гордости и поклонения, расходятся. Бесконечная совокупность их слагаемых не выражает в сумме никакой конечной величины. Его результаты вызвали настоящее замешательство у всех, кто в своих исследованиях прибегал к тригонометрическим рядам. Шутка ли, точное решение, которое подразумевалось ими в недосягаемом пределе и к которому, как им казалось, они стремятся, является фикцией, плодом их воображения! Чего стоят тогда все их достижения? Строго говоря, этими расходящимися рядами никто не имел права пользоваться. Их создатели не угадали в свое время скрытый в них дефект, и вот теперь наступает расплата.
Разочарование было столь велико, что тот первоначальный энтузиазм, с которым астрономы ревностно пропагандировали новые ряды, мгновенно угас. Именно это имел в виду Вейерштрасс, когда в письме к Ковалевской подчеркивал, что "достоинство исследований Пуанкаре состоит больше в их отрицательных, а не в положительных результатах". Об этом же он пишет Миттаг-Леффлеру, указывая, что астрономов эта работа "не очень-то ободрит, так как уничтожает некоторые их давнишние иллюзии и опровергает многое из того, что казалось им прежде обоснованным. Например, доказывается расходимость рядов, к которым приводят методы Ньюкома, Линдстедта и других".