-->

Американские ученые и изобретатели

На нашем литературном портале можно бесплатно читать книгу Американские ученые и изобретатели, Уилсон Митчел-- . Жанр: Биографии и мемуары / Научпоп. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Американские ученые и изобретатели
Название: Американские ученые и изобретатели
Дата добавления: 16 январь 2020
Количество просмотров: 193
Читать онлайн

Американские ученые и изобретатели читать книгу онлайн

Американские ученые и изобретатели - читать бесплатно онлайн , автор Уилсон Митчел

Очерки, посвящённые самым выдающимся учёным и изобретателям Америки, чья деятельность оказывала часто решающие влияние на развитие мировой науки и техники. Рассказывая об их жизни и творчестве, автор в то же время показывает их неразрывную связь с мировой наукой, с мировой культурой. Поэтому содержание книги значительно шире того, что можно предположить по её названию.

Книга представляет собой серию литературных портретов известных американских ученых и изобретателей — Франклина, Морзе, Эдисона, братьев Райт, Фултона, Эли Уитни, Генри, Чарльза Гудийра, Александра Белла, Уилларда Гиббса, Альберта Майкельсона, Роберта Милликена, Ли де Фореста, Ирвинга Пангмюра.

Читателя, который даст себе труд познакомиться с очерками Митчела Уилсона, воскрешающими яркие страницы истории изобретательской мысли, не придётся убеждать в высоких литературных достоинствах этого труда. Писатель выступает не только как острый новеллист, но и как глубокий знаток тех конкретных областей человеческой деятельности, в которых подвизаются его герои.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 30 31 32 33 34 35 36 37 38 ... 47 ВПЕРЕД
Перейти на страницу:

Лучи Беккереля (их назвали именно так) были столь же удивительны, как и рентгеновские лучи, и вызывали у физиков равный интерес. Два ассистента Беккереля — Пьер Кюри и его жена Мария стали разрабатывать эту проблему. По прошествии некоторого времени они обнаружили, что существуют два других химических элемента с теми же свойствами. Оба они не были ранее известны науке. Один из них был назван полонием — в честь родины г-жи Кюри, другой — радием.

Казалось, что великие классические теории физики потрясены до самого основания. Физики полагали, что икс-лучи опровергают законы Максвелла, но потом Рентген доказал, что они не противоречат эфирной теории, так как обладают нормальными оптическими свойствами — отражением, рефракцией и интерференцией. Явление радиоактивности, замеченное Беккерелем, казалось, означало конец красивой теории сохранения энергии. Каким образом вещество без устали вырабатывает энергию, по всей очевидности, никак не пополняя ее запасов?

Любопытное открытие было сделано в 1887 году. Генрих Герц обнаружил, что ультрафиолетовый свет, падая на электрод, который присоединен к цепи с высоким напряжением, заставляет искру отскакивать значительно дальше. Дж. Дж. Томсон доказал, что это происходит из-за того, что ультрафиолетовый свет создает на поверхности металла отрицательный заряд. Явление получило название «фотоэлектрический эффект».

Открытие икс-лучей заставило физиков не только пристальнее присмотреться к явлению флуоресценции, но и побудило их вернуться к природе катодных лучей. Существовали две точки зрения. Немецкие ученые полагали, что катодные лучи в трубке представляют собой вибрации в эфире. Английские физики склонны были считать эти лучи заряженными электричеством частицами, как это предсказывал Бенджамен Франклин. Выдающимся выразителем английской школы был Дж. Дж. Томсон.

В 1897 году Томсон опубликовал классическую статью под названием «Катодные лучи», в которой он сделал обзор всех опытов с катодными лучами. Статья включала также описание некоторых из его собственных опытов. Он пришел к выводу, что катодный луч — это на самом деле поток движущихся при высоком напряжении отрицательно заряженных частиц гораздо меньшего размера, чем самый малый атом. Используя предложенное Стони название, Томсон дал этой частице имя «электрон». Он утверждал, что фотоэлектрический эффект есть не что иное, как выбивание этих электронов из металлической поверхности лучом ультрафиолетового света. Томсон настаивал и на том, что электрон был также составной частью лучей Беккереля.

Утверждение Томсона казалось фантастическим целому поколению ученых, которые не хотели признавать гипотезу, что материя состоит из атомов. Предположение, что существует частица еще меньшая, чем атом, вызвало бурю. Некоторые ученые были готовы согласиться с тем, что электричество — это поток очень маленьких частиц, имеющих электрический заряд, но еще надо было доказать, что каждая такая частица обладала определенной массой и определенным электрическим зарядом. Нужно было провести опыт, чтобы раз и навсегда доказать, что электроны существуют на самом деле.

В 90-х годах прошлого века был все же один немецкий ученый, который не разделял эфирную теорию икс-лучей. Его звали Альберт Эйнштейн. На этого ученого произвел глубокое впечатление опыт Майкельсона с интерферометром. И еще один немец возражал против эфирной теории — Макс Планк [27]. Он сделал в равной степени радикальное предположение: лучевую энергию, т. е. свет, следует представлять в виде «квантов», или мельчайших частиц. Эйнштейн использовал квантовую теорию Планка для объяснения фотоэлектрического эффекта и составил изумительное по красоте суммирующее уравнение. Но в то время мысли Эйнштейна о фотоэлектрическом эффекте не встретили доверия.

Милликен — один из немногих американских аспирантов, работавших тогда в Европе, — был тем человеком, которому суждено было после долгих лет трудов и раздумий поставить два важнейших эксперимента эпохи: один опыт подтвердил правильность электронной теории Томсона; второй дал доказательство теории фотоэлектрического эффекта Эйнштейна и того, что квантовая теория — нечто большее, чем «бред» математика.

Электрон на капле масла

«К концу первого десятилетия, проведенного в Чикагском университете (1906 год), я все еще был преподавателем-ассистентом, — писал Роберт Милликен. — У меня росло двое сыновей. Я начал строить дом, рассчитывая оплатить расходы за счет моих гонораров, но я знал, что до сих пор не занимал сколько-нибудь заметного места среди физиков-исследователей».

Учебник, над которым он работал, был уже в издательстве. Наконец он смог приступить к интенсивной исследовательской работе. В его ученой карьере начался новый этап.

«Все физики интересовались величиной электрического заряда электрона, и, тем не менее, до сих пор не удалось ее измерить…»

Много попыток провести это решающее измерение уже предпринял Дж. Дж. Томсон, но прошло десять лет работы, и ассистент Томсона Г. Вильсон сообщил, что после одиннадцати различных измерений они получили одиннадцать различных результатов.

Прежде чем начать исследования по своему собственному методу, Милликен ставил опыты по методу, применявшемуся в Кембриджском университете. Теоретическая часть эксперимента заключалась в следующем. Масса тела определялась путем измерения давления, производимого телом под воздействием силы тяжести на чашу весов. Если сообщить бесконечно малой частице вещества электрический заряд и если приложить направленную вверх электрическую силу, равную силе тяжести, направленной вниз, то эта частица будет находиться в состоянии равновесия, и физик может рассчитать величину электрического заряда. Если в данном случае частице будет сообщен электрический заряд одного электрона, можно будет высчитать величину этого заряда.

Кембриджская теория была вполне логичной, но физики никак не могли создать прибор, при помощи которого можно было бы заниматься исследованиями отдельных частиц вещества. Им приходилось довольствоваться наблюдением за поведением облака из водяных капель, заряженных электричеством. В камере, воздух из которой был частично удален, создавалось облако пара. К верхней части камеры подводился ток. Через определенное время капельки тумана в облаке успокаивались. Затем сквозь туман пропускали икс-лучи, и водяные капли получали электрический заряд.

При этом исследователи полагали, что электрическая сила, направленная вверх, к находящейся под высоким напряжением крышке камеры, должна якобы удерживать капли от падения. Однако на деле не выполнялось ни одно из сложных условий, при которых, и только при которых, частицы могли бы находиться в состоянии равновесия.

Милликен начал искать новый путь решения проблемы. Дело было не в аппарате, а в том, как им пользоваться. Он внес в его конструкцию ряд небольших изменений, которые «впервые позволили провести все измерения на одной и той же отдельной капельке».

«В качестве первого шага в области усовершенствования я в 1906 году сконструировал небольшую по габаритам батарею на 10 тысяч вольт (что само по себе было в то время немалым достижением), которая создавала поле, достаточно сильное для того, чтобы удерживать верхнюю поверхность облака Вильсона в подвешенном, как „гроб Магомета“, состоянии. Когда у меня все было готово и когда образовалось облако, я повернул выключатель, и облако оказалось в электрическом поле. И в это мгновение оно на моих глазах растаяло, другими словами — от целого облака не осталось и маленького кусочка, который можно было бы наблюдать при помощи контрольного оптического прибора, как это делал Вильсон и собирался сделать я. Как мне сначала показалось, бесследное исчезновение облака в электрическом поле между верхней и нижней пластинами означало, что эксперимент закончился безрезультатно… Однако, повторив опыт, я решил, что это явление гораздо более важное, чем я предполагал. Повторные опыты показали, что после рассеивания облака в мощном электрическом поле на его месте можно было различить несколько отдельных водяных капель».

1 ... 30 31 32 33 34 35 36 37 38 ... 47 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название