Можайский
Можайский читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Опыты Рыкачева были удивительно просты. На одну чашку обыкновенных весов он ставил часовой механизм, вращавший в горизонтальной плоскости крестовину из четырех стержней. На конце каждого стержня укреплялась прямоугольная рамка, обтянутая материей. Меняя углы наклона рамок и накладывая на другую чашу весов гири, удавалось узнать подъемную силу всего винта. Разделив ее на четыре, - определяли подъемную силу одной наклонной плоской пластинки.
На основе этих опытов Рыкачев сделал правильный вывод, что ньютоновская формула непригодна для определения величины подъемной силы.
В 70-х годах прошлого столетия Дмитрий Иванович Менделеев направил всю силу своего таланта на исследование упругости газов. То был трудный, мало разработанный вопрос, но именно это и привлекало внимание ученого. Он стал исследовать газы под очень высоким давлением и наблюдать их при очень большом разрежении. Отсюда один шаг, и этот шаг сделал Менделеев, к проникновению в тайну верхних слоев атмосферы. В одной работе Менделеев писал: "Занимаясь вопросом о разреженных газах, невольно вступил в область, близкую к метеорологии верхних слоев атмосферы". Он говорил о своем интересе к верхним слоям атмосферы: "Да и сами по себе вопросы этого предмета еще столь мало разработаны, что казались мне вполне достойными всеобщего внимания по их важности".
Не отделяя теоретических задач от их практического применения, Менделеев в 1875 году выступил со своим проектом аэростата с герметической кабиной, предназначенного для исследования верхних слоев атмосферы. Такой аэростат в наши дни называют стратостатом.
Записные книжки Менделеева за 1876 - 1879 годы заполнены заметками по воздухоплаванию, записями о книгах и статьях по этому же вопросу, расчетами летательных аппаратов. Вчитываясь в строки, написанные характерным менделеевским почерком, трудно поверить, что их автор был химиком. Но дело в том, что Менделеева нельзя назвать только химиком - он был великим искателем неизведанного, основоположником новых отраслей знания.
Для дела воздухоплавания и воздухолетания, как называли тогда авиацию, Менделеев стал центром, вокруг которого группировались, на знания которого опирались все лучшие, молодые силы России, все, кто работали над созданием отечественной авиационной науки и техники.
Менделеев сделал очень много, распространяя среди самых широких кругов населения знания, способствующие борьбе за победу над воздушной стихией. Это дало право профессору Евграфу Степановичу Федорову{22}, выступая на Первом Менделеевском съезде в январе 1908 года, сказать: "С того момента, когда такой знаменитый ученый, как Д. И. Менделеев, указал на значение воздухоплавания и показал, что правильная постановка дела требует многих разнообразных сведений и дальнейших весьма сложных исследований и изысканий, на воздухоплавание стали смотреть иначе".
В остром, боевом стиле, не признавая компромиссов в принципиальных научных вопросах, написал Дмитрий Иванович Менделеев свою знаменитую книгу "О сопротивлении жидкостей и о воздухоплавании".
В этой книге Менделеев вел борьбу на два фронта: и против голого теоретизирования, и против того приспособленчества, каким является узкий практицизм. Он выступал против "рьяного желания охватить умом и анализом то, чего не знают еще почти нисколько". Эти резкие слова Менделеев адресовал к Ньютону. Но и другая крайность, как говорил он, "чисто практическая", также являлась вредной.
"Нужно знать сопротивление артиллерийских снарядов, да кораблей. Их измеряют, к полученным числам или подбирают формулу, или прилаживают некоторые соображения, или делают то и другое, и считают это теорией предмета, не заботясь о том, чтобы связать новые практические порядки с известными уже фактами, с укрепившимися представлениями.
Годно для существующей практики - вот все чего хотят и чем удовлетворяются. Делается это будто и практично, но для практики вовсе негодно, потому что прилажено к прошлому, недостаточно для будущего, есть покорность факту, а не обладание им, орудие надобности, но не власть знания".
Книга Менделеева явилась ударом огромной силы, который был нанесен слепому преклонению перед авторитетом. Эта книга стала краеугольным камнем фундамента, на котором впоследствии Жуковский, в те годы еще только начинавший свою научную деятельность, поставил свои незыблемые, строгие и ясные основные законы аэродинамики. Через тридцать лет после выхода книги Менделеева Жуковский сказал о ней: "она и теперь может служить основным руководством для лиц, занимающихся кораблестроением, воздухоплаванием и баллистикой".
Своими трудами Николай Егорович Жуковский завершил великое дело, начатое учеными России, - Ломоносовым и Эйлером, Рыкачевым и Менделеевым. И в этом списке славных имен по праву должно стоять имя Александра Федоровича Можайского.
Аэродинамические опыты
Аэродинамические опыты Можайского долго оставались в тени. Он вошел в историю техники как конструктор, создатель первого в мире самолета, как человек, первым поднявший самолет в воздух. А Можайский-исследователь был позабыт, хотя и вел долгую, кропотливую исследовательскую работу, необходимую подготовительную работу для того, чтобы мечта о самолете превратилась в действительность.
Какой груз может поднять крыло данной площади? Как изменится величина поднимаемого груза при изменении скорости полета? Под каким углом к направлению движения следует установить крылья летательного аппарата? Как найти тот угол, при котором достигается наилучшее отношение между подъемной силой и сопротивлением крыла? Вот первые вопросы, которые встали перед Александром Федоровичем Можайским, когда он обдумывал конструкцию летательной машины. Теперь каждый, кто изучил основы авиации, даст ответ на эти вопросы. В те годы, когда Можайский начинал свою исследовательскую работу, на эти вопросы не могли ответить даже крупнейшие представители науки.
Только опыт мог дать ответ и на эти, первоначальные, неизбежно возникающие у конструктора вопросы, и на все те, которые должны были встать перед ним в ходе проектирования.
Есть два совершенно различных приема постановки опытов. Ученик профессора Н. Е. Жуковского, академик Б. Н. Юрьев{23}, сравнивая исследовательскую работу с поисками в неизученной местности, говорит, что исследователь
"пытается с помощью своей теории как бы продолжить "линию известного" в пределах еще неисследованного. При таком развитии теории обычно с некоторого пункта исследователю становится ясным, что далее можно идти с одинаковым правом по двум или даже по нескольким путям. На вопрос, - какой путь выбрать на таком перекрестке, - может ответить лишь опыт".
Продолжая такую работу, исследователь в конце концов приходит к опыту, дающему решение поставленной задачи.
"Такой прием работы, - подчеркивает академик Б. Н. Юрьев, обеспечивает скорейший успех и требует производства лишь немногих, но хорошо выбранных опытов".
Но часто поступают иначе, намечая всевозможные варианты решения задачи, и делают множество совершенно равноценных опытов. При этом ответ на поставленный вопрос ищут в результате опытов, поставленных вслепую.
Этот второй путь технически много сложнее и дороже первого, так как приходится производить множество совершенно бесполезных опытов. И может легко случиться, что при большом количестве произведенных опытов, среди них как раз не окажется нужного, дающего ответ на поставленный вопрос.
Первый метод - путь диалектического подхода к решению задачи - всегда применялся представителями передовой русской науки.
Второй метод - метод эмпирический. Следуя этому методу, американцы однажды испытали свыше полутораста пропеллеров всевозможных форм, но из этих бессистемных опытов не смогли вывести каких-либо общих заключений.
Пользуясь первым приемом, профессор Н. Е. Жуковский поставил всего лишь два правильно намеченных опыта, и они блестяще подтвердили справедливость его вихревой теории воздушного винта.