Девять цветов радуги
Девять цветов радуги читать книгу онлайн
Задумывались ли вы когда-нибудь о том, сколько цветов в радуге? Семь, а может быть, девять, как говорит название книги? Оказывается, их значительно больше, но в то же время название книги правильное. Почему же это так?
Из этой книги вы узнаете, что такое свет видимый и невидимый, как он помогает людям познавать и исследовать окружающий мир, проникать в глубь вещества и в космос. Кроме того, вы прочтете о том, как человек научился видеть в темноте, передавать на огромные расстояния изображения и запечатлевать процессы, длящиеся миллионные доли секунды. Обо всем этом и о других новых достижениях науки и техники рассказано в книге «Девять цветов радуги».
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Мы знаем, что способностью видеть обладают животные, находящиеся на высоких ступенях развития. Но способностью ощущать свет и определять направление на источник света наделены даже очень примитивные живые организмы и растения. Вспомните хотя бы о подсолнечнике, поворачивающемся вслед за солнцем; вспомните о листьях разнообразных растений, которые тоже изменяют свое положение при движении нашего дневного светила. Ведь это говорит о том, что и они обладают некиими органами, чувствующими свет и направление его лучей.
И это действительно верно. Так, на каждом кленовом листе располагается до 15 тысяч специализированных, мудро устроенных светочувствительных клеток. Поверхность их, выступающая на внешнюю сторону листа, имеет выпуклую линзообразную форму, а в полости находится прозрачное вещество. Свет солнца, падающий на такую клетку, фокусируется на задней ее стенке. Точка, где собираются лучи, перемещается при движении солнца. И перемещение этой точки заставляет светочувствительную клетку вырабатывать сигналы, заставляющие лист повернуться по отношению к солнцу так, чтобы точка фокусировки снова вернулась на прежнее место.
Подобного рода клетки имеются у многих растений и простейших животных. Они и являются примитивными светочувствительными органами.
В науке и технике, как и в самой природе, все развивается от простого к сложному. И естественно, что первый искусственный орган зрения был очень простым. Такой первой искусственной светочувствительной «клеткой», электронной «колбочкой» явился фотоэлемент. Он и на самом деле представляет собой запаянную стеклянную колбочку с находящимися внутри нее электродами. Как работает такой фотоэлемент, на каком явлении основан принцип его действия, мы уже знаем.
Расскажем о том, как техника использовала этот примитивный электронный орган зрения и как усовершенствовала его.
Фотоэлемент проводит ток, когда на фотокатод падают лучи света. Чем интенсивнее свет, тем больше по величине этот ток. Такое свойство фотоэлементов позволило применять их в самых разнообразных случаях.
Вот лента сборочного конвейера переносит изделия от одного рабочего места к другому, и постепенно они приобретают все более законченный вид. Наконец выполнена последняя операция, и готовое изделие сходит с конвейера. И в этот момент оно пересекает луч света, направленный в фотоэлемент. Ток через него прекращается, и электронная схема, подключенная к фотоэлементу, подает команду на электромагнитное реле. Оно срабатывает и проворачивает барабан счетчика на одно деление. Очень важно при этом, что сам счетчик может быть установлен на каком угодно расстоянии от конвейера и связан с фотоэлементом и схемой либо по проводам, либо по радио.
Счетчик подобного рода может быть использован не только на производстве. Его можно установить где угодно, например во входных дверях выставочного павильона, музея, и он точно определит количество посетителей.
Устройство, состоящее из фотоэлемента, электронного усилителя и электромагнитного реле, часто применяют и для охраны жизни и здоровья рабочих. Оно защитит человека от травм, остановив машину или выдвинув предохранительные щитки, если руки рабочего или он сам попадут в опасную зону.
Вору, проникшему в магазин, на склад или в банк, где все входы и выходы стерегут фотоэлементы, уже не выбраться назад. Как только он пересечет хотя бы один из лучей, сработает тревожная сигнализация, придут в действие новые запоры, и злоумышленнику уже не спастись. Можно ли обмануть такую охрану, прошмыгнуть незамеченным, не пересекая луча света? Нет. Ведь, в отличие от колбочек и палочек, имеющихся в глазу, электронная колбочка может воспринимать невидимые ультрафиолетовые или инфракрасные лучи. И тот, кто попытается обмануть такую невидимую охрану, даже не догадается, что пересек хотя бы один из лучей «черного» света.
Говоря о запечатленных свете и движении, мы не упомянули о том, что в кино свет используется и для записи звука. На каждой ленте звукового кино с краю проходит специальная дорожка — фонограмма, на которой в виде чередования участков с различной прозрачностью или пропускаемостью света запечатлен звук. Читать такую запись умеет только фотоэлемент. При движении пленки с фонограммой в луче специальной лампы, яркость которой неизменна во времени, интенсивность света, попадающего на фотоэлемент, непрерывно меняется по величине. Ток через фотоэлемент, в свою очередь, меняется пропорционально изменениям интенсивности света. Полученные таким способом электрические сигналы поступают с фотоэлемента в электронный усилитель, который повышает их мощность до величины, достаточной для того, чтобы установленные в зале кинотеатра динамики давали звук требуемой громкости.
С помощью простейшего фотоэлемента можно делать множество полезнейших приборов. Но тем не менее он вовсе не идеален. Главный его недостаток — малая чувствительность. Он может работать только при освещении его очень сильным светом. Но и тогда сила тока, протекающего через фотоэлемент, чрезвычайно мала. По чувствительности фотоэлемент неизмеримо хуже глаза — он уступает не только палочкам, но и колбочкам. Фотоэлемент всегда приходится использовать совместно с электронным усилителем, а это дорого и неудобно.
Принцип умножения
Ученые и инженеры стремились устранить этот недостаток фотоэлемента, не позволяющий применять его во многих очень важных устройствах. И они искали пути, которые привели бы к повышению чувствительности и увеличению рабочих токов. Решая эту задачу, они стремились найти такие металлы и их соединения, применение которых в фотокатодах позволило бы повысить число испускаемых электронов при том же самом количестве падающих на фотокатод фотонов. Это правильный путь, но, идя по нему, нельзя получить особенно большого выигрыша. Законы природы устанавливают здесь естественный предел. Как мы помним, законы фотоэффекта показывают, что даже в идеальном случае каждый фотон (если он к тому же обладает достаточной энергией) может выбить всего лишь один электрон. В настоящее время созданы такие фотокатоды, которые испускают один электрон на каждые пять попавших на него фотонов. При этом, конечно, не учитываются те фотоны, которые принципиально не могут выбить из данного материала электроны.
Это прекрасный результат. Но ученые нашли еще более радикальный метод повышения чувствительности и рабочего тока. Первым использовал его и получил хорошие результаты советский ученый Кубецкий.
Новый тип фотоэлемента, созданный Кубецким, называют фотоэлектронным умножителем.
Если электрону, вылетевшему из фотокатода, сообщить достаточно большую энергию, а следовательно, и скорость и направить его на металлическую пластинку, то электрон может выбить из нее другие электроны.
Схема фотоэлектронного умножителя. Свет, падая на фотокатод 0, выбивает из него электроны. На электроды 1, 2, 3, 4, 5, 6 и на коллектор подано напряжение, причем на каждом последующем электроде это напряжение выше, чем на предыдущем.
Очень важно при этом, что можно подобрать металл для пластинки, ее форму и скорость первичного электрона, что он выбьет из нее не один, а несколько вторичных электронов — например, пять или шесть. Эти электроны, в свою очередь, тоже можно ускорить и вновь направить на следующую, подобную первой пластинку. И тогда из нее будет выбито уже 36 электронов. Если повторять такую операцию, то с третьей пластинки можно выбить 216 электронов, с четвертой— 1296, и так далее.
Создавая фотоумножитель, Кубецкий и воспользовался этим явлением. Он заставил первые выбитые фотонами электроны (поэтому их часто называют фотоэлектронами) разгоняться в электростатическом поле, ударяться о металлический электрод (его называют динодом) и выбивать вторичные электроны. Эти электроны тоже ускорялись и направлялись на следующий динод. Такой процесс повторялся многократно, и количество электронов от динода к диноду нарастало, словно снежная лавина. К последнему электроду, по существу выполнявшему ту же роль, что и анод в обычном фотоэлементе, вместо единичного фотоэлектрона приходили тысячи и даже миллионы вторичных электронов. В приборе Кубецкого фотоэлектроны как бы умножались по закону геометрической прогрессии. Именно поэтому прибор и получил название фотоумножителя. В нем можно получать не один электрон на каждые пять фотонов, как прежде, а до миллиона вторичных электронов на каждый фотон.