О движении (Из истории механики)
О движении (Из истории механики) читать книгу онлайн
Школьная библиотека Ф. Д. Бублейников О движении Из истории механики Рисунки Л. Хорошкевича Москва: Государственное издательство Детской литературы Министерства просвещения РСФСР, 1956
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Круговое движение земной оси усложняется еще обращением Луны вокруг Земли. Во время этого обращения Луна то приближается к плоскости экватора, то удаляется от нее до 5° небесного меридиана.
Когда Луна находится в плоскости земного экватора, зависящее от Луны движение земной оси прекращается. При удалении Луны на наибольшее расстояние от плоскости земного экватора земная ось движется по конусу с наибольшей скоростью.
Подобным же образом влияет на положение земной оси вращение и притяжение Солнца. Но действие Солнца слабее действия Луны вследствие огромного расстояния, отделяющего от него Землю.
Если бы Земля вращалась около оси, относительно которой момент инерции ее имеет наибольшую величину, то вращение было бы очень устойчивым. Положение оси в теле Земли оставалось бы неизменным.
В действительности это не вполне верно.
Пересечения оси вращения с поверхностью Земли представляют собой ее географические полюсы. Если ось вращения не меняет положения в теле Земли, то не должно изменяться и положение на ней полюсов, а вместе с тем и географической широты каждого пункта земной поверхности.
Земная ось совершает движение по конусу с вершиной в центре Земли, подобно тому как это наблюдается у вращающегося волчка.
Впервые Эйлер, исходя из своей теории вращения твердого тела, указал, что если земная ось вращения не вполне точно совпадает с главной осью, то она должна понемногу менять свое положение в Земле.
В те времена, однако, нельзя было установить, меняется ли географическая широта, например, обсерваторий. Только во второй половине XIX века измерения достигли такой точности, что можно было проверить справедливость предположения Эйлера.
Путем точнейших и тщательных измерений астрономы доказали, что географическая широта обсерваторий действительно периодически немного меняется: причем когда у одного пункта она увеличивается, то у симметрично расположенного пункта по другую сторону полюса уменьшается. Эти движения полюсов невелики, и отклонение их от среднего положения не превышает 10 метров.
Перемещение полюсов доказывает, что ось вращения Земли меняет в ней свое положение. Значит, Земля вращается около оси, не вполне совпадающей с той, относительно которой момент инерции ее имеет наибольшую величину.
Вращение Земли оказывает влияние и на фигуру ее.
Если бы Земля не вращалась, то все ее частицы расположились бы вполне симметрично, и она имела бы форму шара. Вращение же заставило Землю сжаться у полюсов и вытянуться в плоскости экватора, приняв форму сжатого эллипсоида.
Впервые на сжатие Земли указал Ньютон. Он вывел теоретически и величину сжатия, то-есть отношение разности между экваториальным и полярным радиусами к большой полуоси.
Величина сжатия зависит от скорости вращения. Если бы угловая скорость вращения Земли увеличилась, то экваториальный радиус удлинился бы, а полярный укоротился. Проблемой зависимости фигуры Земли от угловой скорости ее вращения занимались многие математики и механики. Особенно важны исследования русского математика А. М. Ляпунова (1857–1918).
Сын русского астронома, А. М. Ляпунов окончил С.-Петербургский университет, получив золотую медаль за сочинение по математике. Он был оставлен при кафедре математики для подготовки к профессуре.
А. М. Ляпунов работал с увлечением, довольствуясь четырьмя-пятью часами сна. Он редко посещал театры и концерты, сосредоточив все свои интересы на математических исследованиях.
Диссертация А. М. Ляпунова, написанная для соискания первой ученой степени (магистра), была посвящена фигуре вращающегося жидкого космического тела. Последующие его работы также родственны этой теме.
А. М. Ляпунов доказал, что если бы скорость Земли все увеличивалась, то при достижении ею некоторой величины сжатый эллипсоид перестал бы быть фигурой «равновесия»; Земля начала бы сжиматься не только у полюсов, но и вдоль одного из диаметров экватора.
В настоящее время земные меридианы имеют эллиптическую форму, а экватор и параллели — круги. При большом же ускорении вращения экватор и параллели также превратились бы в эллипсы.
Тело, у которого и меридианы и параллели — эллипсы, называется трехосным эллипсоидом.
Исследование показало, что превращение фигуры Земли началось бы, когда большая ось ее превзошла бы по длине малую в 1,72 раза.
Трехосный эллипсоид оставался бы фигурой «равновесия» до определенной угловой скорости вращения Земли. При ускорении вращения отношение между его осями продолжало бы изменяться. Наконец, когда оси стали бы относиться как 1000: 432: 343, то один конец эллипсоида начал бы вытягиваться, а другой притупляться.
Трехосный эллипсоид принял бы грушевидную форму. Как доказал А. М. Ляпунов, эта фигура неустойчива: от вытянутого конца должна бы отделиться часть тела, после чего тело опять приняло бы устойчивую форму эллипсоида. При замедлении вращения тела изменение его формы происходило бы в обратном порядке: укорачивался бы экваториальный диаметр и удлинялась бы ось вращения.
В настоящее время сжатие Земли равно 1/298,3. Оно соответствует угловой скорости вращения, при которой Земля совершает один оборот около оси в течение 24 часов [19].
Но, как доказали астрономические наблюдения, скорость вращения Земли замедляется. В течение ста лет сутки становятся длиннее на 0,001 секунды. Это явление объясняется трением волны морского прилива, двигающейся в направлении, обратном вращению Земли.
Когда-то в далеком геологическом прошлом Земля вращалась быстрее, чем в наше время. Но трение волны прилива замедлило ее вращение.
Положим, что удлинение суток вследствие замедления приливным трением угловой скорости вращения Земли происходило в течение тысячи шестисот миллионов лет. Как показывает расчет, сутки должны были удлиниться приблизительно на 4 часа.
Вместо 24 часов сутки длились только 20 часов, то-есть 0,8 нынешних суток. Значит, Земля вращалась в 1/0,8 = 1,2 раза быстрее. Поэтому сжатие ее было больше, чем теперь.
Сжатие увеличивается пропорционально квадрату скорости вращения. Теперь оно равно 1/298,3. Значит, в те времена оно было в 1,22 больше, то-есть равнялось 1/210. Через тысячу миллионов лет сутки удлинятся на 2,5 часа. Они будут равны 26,5 часа, то-есть в 26,5/24 = 1,1 раза длиннее. Угловая скорость вращения Земли уменьшится в 1,12 раза. Вследствие этого полярный радиус удлинится, а экваториальный укоротится настолько, что сжатие Земли не превзойдет 1/360.
Все эти расчеты сделаны в предположении, что вращается жидкая масса. Земля же — твердое тело. Однако под влиянием постоянных сил, как, например, тяготения частиц к центру масс, она проявляет свойства жидкого тела.
Поэтому при изменении скорости вращения фигура Земли будет изменяться. Но это изменение может происходить лишь очень медленно, вследствие чрезвычайной вязкости Земли.
Начало Даламбера
В первой половине XVIII века французский механик и математик Жан Лерон Даламбер (1717–1783) дал замечательный новый метод решения задач динамики.
Жизнь этого ученого может служить примером достижения больших успехов личным трудом.
Даламбер не знал своих родителей. Он был найден ребенком на паперти одной из церквей в Париже. Воспитанный в семье стекольщика, Даламбер занимался для заработка юридическими науками. Но, увлекшись математикой, он проявил в ней большие способности и быстро приобрел известность среди ученых.
В возрасте двадцати четырех лет Даламбер уже был выбран в члены Парижской Академии наук и получил крупную королевскую пенсию, позволившую ему, не заботясь о заработке, отдать все свое время научным исследованиям.
В расцвете славы Даламбер получил приглашение занять пост президента Берлинской Академии наук, а позднее — стать воспитателем сына императрицы Екатерины II. Но он отказался от обоих предложений и всю жизнь оставался на родине — во Франции, где был избран секретарем Парижской Академии наук.