-->

Как же называется эта книга

На нашем литературном портале можно бесплатно читать книгу Как же называется эта книга, Смаллиан Рэймонд М.-- . Жанр: Прочая детская литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Как же называется эта книга
Название: Как же называется эта книга
Дата добавления: 16 январь 2020
Количество просмотров: 149
Читать онлайн

Как же называется эта книга читать книгу онлайн

Как же называется эта книга - читать бесплатно онлайн , автор Смаллиан Рэймонд М.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 13 14 15 16 17 18 19 20 21 ... 50 ВПЕРЕД
Перейти на страницу:

83. Предположим, что обвинитель был бы лжецом. Тогда высказывания (1) и (2) были бы ложными. Но если высказывание (1) ложно, то X не виновен, а если ложно высказывание (2), то X и Y оба виновны. Итак, X должен был быть виновным и не виновным одновременно, что невозможно.

Следовательно, обвинитель должен быть рыцарем. Значит, X в действительности виновен, а поскольку X и Y не могут быть виновными одновременно, то Y должен быть не виновен.

Следовательно, X виновен, Y не виновен, и обвинитель - рыцарь.

84. Если бы обвинитель был лжецом, то тогда

1) X и Y оба были бы виновны;

2) X был бы виновен.

И в этом случае мы бы опять пришли к противоречию.

Следовательно, обвинитель - рыцарь, X не виновен, а Y виновен.

85. Предположим, что обвинитель был бы лжецом. Тогда высказывание (1) ложно, поэтому X виновен и Y не виновен.

Следовательно, X виновен. Но высказывание (2) также ложно, поэтому X не виновен, и мы приходим к противоречию. Значит, в этой задаче, так же как и в предыдущей, обвинитель - рыцарь. Тогда в силу высказывания (2) X виновен. Из высказывания (1) (так как X не невиновен) мы заключаем, что Y виновен. Следовательно, в этом случае X и Y оба виновны.

86. Подсудимый A не может быть рыцарем, так как если бы он был рыцарем, то был бы виновен и не лгал бы, утверждая, что не виновен. Подсудимый A не может быть и лжецом, так как если бы он был лжецом, то его высказывание было бы ложным, и он был бы виновен и, следовательно, был бы рыцарем.

Значит, A - нормальный человек и не виновен. Поскольку A не виновен, то высказывание островитянина B истинно.

Следовательно, B не лжец: он либо рыцарь, либо нормальный человек. Предположим, что B был бы нормальным человеком.

Тогда высказывание островитянина C было бы ложным, и C был бы либо лжецом, либо нормальным человеком. Это означало бы, что среди трех островитян A, B, C нет ни одного рыцаря.

Следовательно, вопреки условиям задачи ни один из них не виновен. Отсюда мы заключаем, что B не может быть нормальным человеком. Он должен быть рыцарем и, следовательно, виновен.

87. Пока Крэг не прибыл /* Обозначим подсудимого A, защитника B и обвинителя C.*/. Прежде всего заметим, что A не может быть лжецом, так как если бы он был лжецом, то его высказывание было бы ложно и, следовательно, он был бы виновен. Мы пришли бы к противоречию с тем условием задачи, в котором говорится, что лжец не виновен. Значит, A - либо рыцарь, либо нормальный человек.

Первый случай: A - рыцарь. Поскольку его высказывание истинно, то он не виновен. Тогда высказывание защитника B также истинно. Следовательно, B - либо рыцарь, либо нормальный человек. Но A - рыцарь; поэтому B нормальный человек. Значит, C может быть только лжецом. А поскольку известно, что лжец не виновен, то B виновен.

Второй случай: A - нормальный человек и не виновен.

Высказывание защитника B истинно и в этом случае, поэтому B - рыцарь (поскольку A - нормальный человек). Так как A не виновен и C, будучи лжецом, не виновен, то виновен B.

Третий случай: A - нормальный человек и виновен. В этом случае высказывание обвинителя истинно, поэтому обвинитель должен быть рыцарем (он не может быть нормальным человеком, так как "вакансия" нормального человека занята A).

Следовательно, B может быть только лжецом.

Итак, вот что мы выяснили, рассматривая три возможных случая:

Подсудимый Не виновен Не виновен Виновен Рыцарь Нормальный Нормальный человек человек

Защитник Виновен Виновен Не виновен Нормальный Рыцарь Лжец человек

Обвинитель Не виновен Не виновен Не виновен Лжец Лжец Рыцарь

Все три случая согласуются с заявлениями, сделанными тремя главными участниками судебного процесса до прибытия Крэга.

После прибытия Крэга. Крэг спросил у обвинителя, виновен ли тот. Задавая свой вопрос, инспектор Крэг уже знал, что обвинитель не виновен (так как во всех трех случаях обвинитель не виновен), поэтому ответ обвинителя был нужен Крэгу лишь для того, чтобы установить, кто такой обвинитель: рыцарь или лжец. Если бы обвинитель правдиво ответил "нет", то инспектор Крэг понял бы, что случаи (1)

и (2) можно исключить, и не стал бы задавать новых вопросов. Но инспектору Крэгу после того, как обвинитель ответил, понадобилось задать еще несколько вопросов.

Следовательно, обвинитель должен быть лжецом и на вопрос инспектора ответить "да". Такой ответ заставил инспектора Крэга (а вместе с ним и читателя) исключить из рассмотрения случай (3) и в дальнейшем рассматривать только случаи (1) и (2). Это означает, что в действительности виновен защитник, но относительно подсудимого и защитника не известно, кто из них рыцарь и кто нормальный человек. Затем Крэг спросил у подсудимого, виновен ли обвинитель и, получив ответ, смог до конца разобраться в ситуации. На вопрос Крэга рыцарь ответил бы "нет", в то время как нормальный человек ответил бы либо "да", либо "нет".

Получив ответ "нет", Крэг не смог бы определить, был ли подсудимый рыцарем или нормальным человеком. Но поскольку для Крэга после ответа все стало ясно, то подсудимый должен был ответить "да". Следовательно, подсудимый - нормальный человек, а защитник - рыцарь (хотя он и виновен).

VII. Как избежать оборотней и другие полезные практические советы

Эта глава посвящена не столько занимательным аспектам логики, сколько ее практическим приложениям. Во многих житейских ситуациях полезный совет был бы как нельзя кстати. Учитывая это, я обстоятельно, шаг за шагом научу вас: A) как избежать оборотней в лесу; Б) как выбрать невесту; B) как защищать себя на суде; Г) как жениться на дочери короля.

Разумеется, я не могу поручиться, что вам непременно представится случай убедиться, насколько полезны мои советы, но как мудро объяснил Алисе Белый Рыцарь, нужно быть готовым ко всему!

А. КАК ВЕСТИ СЕБЯ B ЛЕСУ, ГДЕ ВОДЯТСЯ ОБОРОТНИ

Предположим, что вы находитесь в лесу, каждый обитатель которого либо рыцарь, либо лжец. (Напомним, что рыцари всегда говорят правду, а лжецы всегда лгут.) Кроме того, в лесу водятся оборотни, имеющие на редкость неприятную привычку иногда превращаться в волков и пожирать людей.

Оборотень может быть либо рыцарем, либо лжецом.

88.

Вы берете интервью у трех обитателей леса A, B, C.

Известно, что ровно один из них оборотень. В беседе с вами они заявляют:

A: C - оборотень.

B: Я не оборотень.

C: По крайней мере двое из нас лжецы.

Наша задача состоит из двух частей.

а) Кто оборотень: рыцарь или лжец?

б) Если бы вам предстояло выбрать одного из трех обитателей леса в попутчики и вопрос о том, не окажется ли ваш избранник оборотнем, волновал бы вас сильнее, чем вопрос, не окажется ли он лжецом, то на ком из трех вы бы остановили свой выбор?

89.

Вы снова берете интервью у трех обитателей леса A, B и C.

Известно, что каждый из них либо рыцарь, либо лжец и среди них имеется ровно один оборотень. В беседе с вами они заявляют:

A: Я оборотень.

B: Я оборотень.

C: Не более чем один из нас рыцарь.

Проведите полную классификацию A, B и C.

90.

В этой и в двух следующих задачах мы снова встречаем трех обитателей леса A, B, C, каждый из которых либо рыцарь, либо лжец. Заявления делают только двое из них: A и B. В их высказываниях слово "нас" относится ко всем трем героям (к A, B и C), а не только к A и B.

Предположим, что A и B заявили следующее:

A: По крайней мере один из нас рыцарь.

B: По крайней мере один из нас лжец.

Известно, что по крайней мере один из них оборотень и ни один не является одновременно рыцарем и оборотнем. Кто оборотень?

91.

На этот раз A и B сделали следующие заявления:

A: По крайней мере один из нас лжец.

B: C - рыцарь.

Известно, что ровно один из них оборотень и что он рыцарь.

Кто оборотень?

92.

В этой задаче A и B заявили следующее:

1 ... 13 14 15 16 17 18 19 20 21 ... 50 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название