Путешествие по Карликании и Аль-Джебре

На нашем литературном портале можно бесплатно читать книгу Путешествие по Карликании и Аль-Джебре, Левшин Владимир Артурович-- . Жанр: Детская образовательная литература / Математика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Путешествие по Карликании и Аль-Джебре
Название: Путешествие по Карликании и Аль-Джебре
Дата добавления: 15 январь 2020
Количество просмотров: 240
Читать онлайн

Путешествие по Карликании и Аль-Джебре читать книгу онлайн

Путешествие по Карликании и Аль-Джебре - читать бесплатно онлайн , автор Левшин Владимир Артурович

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.

Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.

Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 40 41 42 43 44 45 46 47 48 ... 50 ВПЕРЕД
Перейти на страницу:

— Вот вы говорите, что мнимая монорельсовая дорога похожа на действительную. Значит, и правила движения на ней те же. Так ведь? Тогда при чём здесь карусель? Ведь на обычной монорельсовой дороге движение идёт по прямой, а карусель-то кружится?

— Вы отчасти правы, — ответила Мнимая Единичка. — Правила движения у нас более разнообразны. При сложении и вычитании вагончики на мнимой дороге движутся по прямой и по тем же правилам, что и действительные числа:

2i+Зi=5i;

8i−15i= −7i,

или вот еще ну и конечно:

5i−5i=0,

Мнимые Единички с разными знаками и одинаковыми коэффициентами взаимоуничтожаются на Нулевой станции.

Иное дело — умножение, деление, возведение в степень… Тут уж Мнимые Единицы двигаются не только по прямой, но и по кривой. Именно это вы сейчас и увидите.

Мы вошли в круглый павильон. Там было полным-полно Мнимых Единиц. Все они с нетерпением ждали своей очереди покружиться.

Павильон очень похож на цирк. Места расположены амфитеатром. В центре — арена, её под прямым углом друг к другу пересекают две перекладины. Одна перекладина изображает монорельсовую дорогу действительных чисел. На концах её укреплены таблички

Путешествие по Карликании и Аль-Джебре - i_175.png

Другая перекладина изображает дорогу мнимых чисел. Здесь на концах находятся таблички

Путешествие по Карликании и Аль-Джебре - i_176.png

На пересечении дорог, в центре арены, — Нулевая станция. Здесь укреплена вращающаяся ось, и на неё (совсем как патефонная пластинка) надет прозрачный пластмассовый круг.

Когда мы вошли, карусель только что остановилась. С неё легко соскочила Мнимая Единица с зелёным зонтиком. Вместо неё на круг против таблички

Путешествие по Карликании и Аль-Джебре - i_177.png

стала Мнимая Единица с жёлтым зонтиком.

Наша спутница подошла к микрофону и скомандовала:

Путешествие по Карликании и Аль-Джебре - i_178.png

— К возведению в степень приготовиться!

Прозвенел звонок, и под звуки плавного вальса круг тронулся. Только не по часовой стрелке, а в обратную сторону. И тут-то начались необыкновенные вещи!

Мнимая Единица с жёлтым зонтиком пересекла дорогу действительных чисел у таблички

Путешествие по Карликании и Аль-Джебре - i_179.png

и превратилась в действительное число — Отрицательную Единицу. Возле таблички

Путешествие по Карликании и Аль-Джебре - i_180.png

она снова стала Мни

мой Единицей, но уже со знаком минус. Вот она снова пересекла действительную дорогу, поравнялась с табличкой

Путешествие по Карликании и Аль-Джебре - i_181.png

и — невероятно! — опять превратилась из Мнимой Единицы в Действительную, да ещё положительную. А потом как ни в чём не бывало возвратилась к табличке

Путешествие по Карликании и Аль-Джебре - i_182.png

Тут она снова стала Мнимой.

Оркестр заиграл песню «Каким ты был, таким остался!», и всё началось сначала. Карусель кружилась, а Мнимая Единица всё превращалась и превращалась.

— Не понимаю, — сказал Сева. — Мнимая Единица превращается в Действительную, Действительная — опять в Мнимую… Как это?

— На то и возведение в степень! — отозвалась Мнимая Единичка. — Ведь Мнимая Единица равняется корню квадратному из минус единицы:

Путешествие по Карликании и Аль-Джебре - i_183.png

Но если возвести в квадрат корень квадратный из любого числа, что получится?

— Подкоренной число, — ответил Олег.

— Так это же мы недавно видели! — вспомнил Сева. — Один карликан целый час возводил в квадрат то корень квадратный из трёх, то корень квадратный из двух… И каждый раз получалось число, стоящее под радикалом.

— То же самое происходит и с Мнимой Единицей:

Путешествие по Карликании и Аль-Джебре - i_184.png

— Ну, это понятно. А как же действительное число — минус единица — превращается в мнимое?

— При этом Мнимая Единица, возводится уже не в квадрат, а в куб, то есть в третью степень:

Путешествие по Карликании и Аль-Джебре - i_185.png

А это ведь всё равно что умножить минус единицу на i:

Путешествие по Карликании и Аль-Джебре - i_186.png

— Теперь, — сказал Олег, — нетрудно понять, как Мнимая Единица с минусом

Путешествие по Карликании и Аль-Джебре - i_187.png

превращается в Действительную Единицу со знаком плюс

Путешествие по Карликании и Аль-Джебре - i_188.png

Она возводится в четвёртую степень:

Путешествие по Карликании и Аль-Джебре - i_189.png

А это можно представить себе и так:

−1 × −1 = +1.

— Прекрасно! — воскликнула Мнимая Единичка. — Остаётся выяснить, как Действительная Единица снова становится Мнимой.

В самом деле, как? Тут даже Олег ни до чего не додумался. Но оказалось, что для этого Мнимую Единицу надо возвести в пятую степень.

— Не может быть! i5 равно i?! — растерялись мы. — Как же так? Что же это такое?

Путешествие по Карликании и Аль-Джебре - i_190.png

— Да ничего особенного: i4=1.

Чтобы получить i5, умножим единицу на i. А это ведь всё равно что i, взятое один раз, то есть просто i:

1·i=i.

— Вот так история! Мнимую Единицу нельзя возвести более чем в четвёртую степень? — удивился Олег.

— Отчего же! — возразила Мнимая Единичка. — Возводите себе на здоровье и в шестую, и в седьмую, и в сто двадцать первую… Словом, в любую целую степень. Но ничего, кроме того, что уже было, не получится. На то и карусель!

Тут Севе срочно понадобилось выяснить, чему равняется i17.

— Ну, это совсем нетрудно, i в пятой равно i, — сказала Мнимая Единичка. — Значит, i в девятой тоже равно i…

— Понимаю! — перебил Сева. — Каждый раз надо прибавлять к показателю степени четыре: i13 равно i, значит, i17 тоже равно i.

Вот, Нулик, хорошая задача для твоих учеников. Попробуйте вычислить, чему равно i24. А чтобы вам легче было, загляните в чертёж мнимой карусели.

Долго ещё любовались мы превращениями Мнимых Единиц, а когда уже собрались уходить, Сева хлопнул себя по лбу:

— Чуть не забыл спросить! Вы сказали, что при возведении в степень Мнимые Единицы движутся по кривой. А ведь здесь они движутся по окружности!

— Окружность тоже кривая, но такая, где все точки находятся на одинаковом расстоянии от центра. При умножении и возведении в степень перемещаются по окружности только Мнимые Единицы.

— А как движутся другие мнимые числа при возведении в степень? — спросил Олег. — Два i три i, четыре i?

— На нашей карусели вы этого не увидите, — сказала Мнимая Единичка. — Да оно и к лучшему. Нельзя же всё сразу…

— Всякому овощу своё время? — подмигнул Сева.

— Пожалуй, — улыбнулась Мнимая Единичка.

Мы поблагодарили её и распрощались. Но тут пришла очередь Олегу лопать себя по лбу.

— Извините, пожалуйста, — сказал он, обернувшись, — а зачем вообще нужны мнимые числа?

— Это вы поймёте, когда начнёте решать уравнения второй и третьей степени. Там в ответе часто получаются мнимые числа.

— На что нужны уравнения с мнимыми ответами? — буркнул Сева.

— Спросите об этом у физиков, химиков, инженеров, астрономов… Мнимые числа помогают им решать вовсе не мнимые, а действительно важные практические задачи.

— Но почему же тогда вас называют мнимыми?

— По привычке, — грустно ответила буковка i. — Так нас окрестил французский учёный Рене Декарт. Это было в семнадцатом веке, когда мнимые числа ни во что не ставились. Но с тех пор многое переменилось. Если бы Декарт жил в наши дни, он непременно придумал бы для нас более подходящее название.

1 ... 40 41 42 43 44 45 46 47 48 ... 50 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название