-->

Фрегат капитана Единицы

На нашем литературном портале можно бесплатно читать книгу Фрегат капитана Единицы, Левшин Владимир Артурович-- . Жанр: Детская образовательная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Фрегат капитана Единицы
Название: Фрегат капитана Единицы
Дата добавления: 15 январь 2020
Количество просмотров: 183
Читать онлайн

Фрегат капитана Единицы читать книгу онлайн

Фрегат капитана Единицы - читать бесплатно онлайн , автор Левшин Владимир Артурович

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 2 3 4 5 6 7 8 9 10 ... 22 ВПЕРЕД
Перейти на страницу:

ДУМАТЬ НАДО, ДУМАТЬ!

3 нуляля

— Внимание! — сказал капитан. — Фрегат идёт вдоль берега Точных Доказательств. Здесь надо вести судно особенно осторожно: повсюду подстерегают подводные камни. Один неумелый манёвр — и можно утонуть в море Ошибок. Вот герб берега Точных Доказательств.

Капитан протянул нам памятный значок. На одной его стороне было написано: «Меньше слов — больше смысла», а на обороте — «Требуйте точных и красивых доказательств!»

Да, это вам не бухта Аксиома, где ничего нельзя доказывать! Здесь не только можно, но и нужно. Но капитан сказал, чтобы я не слишком торопился отделаться от аксиомы. Потому что без аксиомы ничегошеньки не докажешь. Ни одной теоремы!

— Чего-чего? — переспросил я.

— Те-о-ре-мы! — повторил капитан. — Это слово греческое и означает в переводе «обдумывание». Для того чтобы доказать теорему, надо много думать.

Я сказал, что, наверное, очень трудно доказывать теоремы. Но капитан ответил, что совсем не трудно, если всё время думать логически, то есть рассуждать правильно, последовательно, так, чтобы одна мысль вытекала из другой, а не противоречила ей. Уметь логически рассуждать важно каждому, а математику — особенно.

Я попросил капитана доказать какую-нибудь теорему. Он нарисовал два треугольника, оба прямоугольные, — я это понял сразу, потому что не успел ещё забыть легенду про маму-Гипотенузу и братьев-Катетов. Капитан велел запомнить, что точки, где сходятся стороны треугольника, называются вершинами и что вершин у треугольника три. Он их обозначил латинскими буквами. У одного треугольника — большими (А, В, С), у второго — маленькими (а, b, с).

— Эти треугольники замечательны тем, — продолжал капитан, — что как меньшие, так и большие катеты у обоих одинаковой длины. Вот и надо доказать, что при этом треугольники равны между собой.

Я чуть было не брякнул, что это очень просто, но капитан остановил меня.

— Первым делом, — сказал он, — надо определить, что такое равные треугольники. Ведь прежде чем что-либо доказывать, надо знать, что собираешься доказать. Так вот. Если ты возьмёшь два треугольника, наложишь их аккуратно один на другой и они в точности совпадут, то такие треугольники и называются равными.

Я тут же решил вырезать один из нарисованных треугольников, а потом наложить его на другой, но капитан сказал, что это будет не доказательство теоремы, а кит знает что.

Во-первых, нам может только показаться, что треугольники совпали, потому что зрение наше несовершенно. Но если даже треугольники совпадут в точности, мы докажем лишь то, что равны только эти треугольники. А теорема должна быть справедливой не для двух, а для всех прямоугольных треугольников, у которых катеты соответственно равны.

— А для этого, друзья, — закончил капитан, — нужно уметь рассуждать. Думать надо, думать!

Ничего не поделаешь, придётся немножко и подумать.

— Начнём доказательство со слов: «Допустим, что…», — сказал капитан. — Допустим, что я мысленно (обратите внимание — мысленно!) накладываю вершину прямого угла одного треугольника на вершину прямого угла второго — точку А на точку а. А потом осторожно накладываю друг на друга два равных катета. Как вы думаете, совпадут концы этих катетов или нет? Совпадут точки В и в?

— Совпадут, — ответил Пи, — ведь катеты эти одинаковой длины.

— Верно. Теперь допустим, что эти катеты крепко-накрепко склеились. Наложатся друг на друга два других катета? Думайте, думайте!

— Ясно, наложатся, — ответил я. — Углы между катетами у обоих треугольников прямые — значит, одинаковые, по 90 градусов, длины катетов тоже одинаковые.

— Ты делаешь успехи, Нулик! — похвалил капитан. — Итак, логика помогла нам выяснить, что катеты обоих треугольников накрепко склеились. Остаётся установить, совпали гипотенузы или нет.

Мы с Пи понимали, что гипотенузы должны совпасть, но капитан потребовал, чтобы мы это до-ка-за-ли! Да, нелёгкая это работа — из болота тащить бегемота! Хорошо, капитан дал наводящий вопрос: все ли вершины треугольника совпали?

— Все! — сказал Пи.

— Значит, — сообразил я, — совпали и гипотенузы ВС и вс!

Фрегат капитана Единицы - _009.jpg

Капитан прищурился:

— Ой ли? А из чего это следует?

Из чего? Ах я чудак этакий! Да из аксиомы! Аксиомы о том, что через две точки можно провести только одну прямую!

— Логично, — согласился капитан. — Теперь теорема доказана: треугольники в точности наложились один на другой. Стало быть, они равны между собой.

Ура! Да здравствуют аксиомы!!

ПОСТОЯННЫЕ ОТНОШЕНИЯ

4 нуляля

Какие чудные имена бывают у островов! Как вам, например, нравится такое — «Остров Отношений»? Мы с коком чуть со смеху не лопнули, когда услышали, что так называется нынешняя наша стоянка. Добро бы ещё это был Остров Добрых Отношений или, на худой конец, Остров Плохих Отношений… А то просто отношений — и всё тут!

Но капитан сказал, что остров этот ни к добрым, ни к плохим отношениям отношения не имеет. Это остров отношений математических.

Мы, конечно, потребовали объяснений и, как всегда, своё получили.

— Смотрите, — сказал капитан. И написал на листе блокнота вот что:

6:2 = 3

Ну, мы сразу поняли, что это пример на деление.

— Верно, — сказал капитан, — но тот же самый пример на деление можно рассматривать как пример на отношение чисел. Разделив шесть на два, мы выясним, как эти числа относятся друг к другу.

— Ага! — обрадовался я. — Значит, у чисел всё-таки есть какие-то отношения!

— Разумеется, — подтвердил капитан, — но не добрые и плохие, а числовые. И если у нас с тобой отношения могут меняться в зависимости от твоего поведения (сегодня — хорошие, завтра — плохие), то у чисел они никогда не меняются. Отношение шести к двум всегда равно трём, десяти к двум — пяти, тридцати шести к четырём — девяти…

— Значит, разные числа относятся друг к другу по-разному? — сообразил Пи.

— Не всегда, — сказал капитан. — В том-то и дело, что есть много пар разных чисел, которые относятся друг к другу совершенно одинаково. Отношение шести к двум равно трём. Но ведь трём равно и отношение двенадцати к четырём, восемнадцати к шести, ста двадцати к сорока. Таких пар можно подобрать сколько угодно. Соединим два таких отношения знаком равенства и получим пропорцию:

6:2 = 12:4

Ведь пропорция как раз и есть равенство двух отношений, а числа, образующие пропорцию, называются соответственно пропорциональными.

Капитан хотел сказать ещё что-то, но я спросил: что значит «соответственно»?

— А то, — объяснил капитан, — что делимые двух отношений пропорциональны их делителям. 6 и 12 пропорциональны 2 и 4.

Ничего не скажешь, всё понятно, но, по совести, скучновато. Во всяком случае, после рассказа капитана ничего интересного от острова Отношений мы не ждали. И напрасно.

Не успели мы сойти на берег, как тут же попали в кино и с удовольствием посмотрели весёлый приключенческий фильм «Великолепная Восьмёрка». Правда, какое отношение к числовым отношениям имеет кино, мы поначалу не уловили, но оказалось, что самое непосредственное.

Кинолента состоит из крохотных кадров, а на экране те же кадры мы видим увеличенными во много-много раз. Но самое главное здесь в том, что числовое отношение всех размеров изображения остаётся при этом точно таким же, как и на плёнке.

На плёнке изображён дом. Высота его, допустим, 8 миллиметров, ширина 4. На экране же высота этого дома стала 80 сантиметров, а ширина — 40. Дом вырос в 100 раз. Но отношение его высоты к ширине ничуть от этого не изменилось. Все размеры его соответственно пропорциональны размерам на плёнке. Стало быть, на экране мы видим точное подобие того, что есть на киноленте. Вот почему изображения, все размеры которых соответственно пропорциональны, называются подобными.

1 2 3 4 5 6 7 8 9 10 ... 22 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название