Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре читать книгу онлайн
«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.
Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.
Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
— Почти так! — засмеялась Четвёрка. — Древние славяне отмечали титлом буквы. Когда над буквой ставили титло, буква превращалась в число.
— Выходит, Сева прав, — сказал Олег. — Буквам давались титулы. Только титулованные буквы становились не графами и не баронами, а числами.
— Посмотрите на эту табличку, — сказал слышавший наш разговор карликан. — Здесь изображены славянские буквы с титлами. Под каждой написано название буквы и числа, которое она обозначает.
— А как же записать числа, которых здесь нет? — спросила Таня. Например, двенадцать?
— Я знаю, — сказал Сева, — десять и рядом два. Вот так:
— Как раз наоборот, — возразила Четвёрка, — сперва два, а уж потом десять. И читалось это так: два на десять. Интересно, что этот порядок чтения чисел сохранился до наших дней: двенадцать, пятнадцать — несмотря на то, что пишем мы сначала десятки, а потом единицы.
— Таким способом писать маленькие числа, может быть, и легко, — сказал Сева, — а как написать большое число?
— А вот как, — вмешался в разговор карликан и показал несколько одинаковых позеленевших медных значков:
Этим значком обозначалась тысяча. Значок ставили впереди числа тысяч.
обозначает двадцать, а вот так
двадцать тысяч. Два таких значка обозначают тысячу тысяч, то есть миллион. Вот это
уже двадцать миллионов.
— Но должна заметить, — сказала Четвёрка, — что древние славяне не знали чисел больше тысячи. А когда они познакомились с числом десять тысяч, оно показалось им таким огромным, что его стали называть тьмой.
— Оттуда, наверное, и пошло, — сказал Олег, — выражение тьма-тьмущая. Это когда чего-нибудь очень много!
— Так много, что в глазах темно, — добавила Таня.
— Потом, однако, — продолжала Четвёрка, — славяне научились считать и больше чем до десяти тысяч. Сперва дошли
до миллиона и стали уже его называть тьмой:
А потом дошли до миллиона миллионов. Это у них был легион.
— А дальше?
— А дальше пошёл легион легионов — леодр.
— А леодр леодров они знали?
— Знали и называли его вороном.
— Прямо как птицу, — засмеялся Сева.
— Это понятно, — вставил Олег, — ворон чёрный, темнее тьмы.
— А как назывался у них ворон воронов?
— А такого у них и не было, — ответила Четвёрка. — Больше ворона, говорили они, несть уму разумети.
— Значит, дальше — стоп! — сказал Сева.
— Не совсем, — ответила наша провожатая. — В одной рукописи было найдено число побольше ворона — десять воронов. И называлось это число колода.
И в той рукописи сказано: «Того числа несть больше».
— Значит, об эту колоду они споткнулись и дальше не пошли, — заключил Сева.
— А мы пойдём дальше, — улыбнулась Четвёрка.
По дороге нас ожидала ещё одна приятная неожиданность.
У Олега развязался шнурок на ботинке. Он нагнулся, чтобы его завязать, и заметил, что стоит на глиняной плите. Он счистил с неё слой земли. И все увидели, что плита покрыта множеством довольно глубоких чёрточек-клинышков.
— Это, наверное, какая-то древняя письменность, — решил Олег.
— Вы не ошиблись, — ответила Четвёрка. — Это клинопись. Так писали в Древнем Вавилоне. Маленькими заострёнными палочками вавилоняне выдавливали свои письмена на мокрой глине, а потом обжигали глиняные плитки на ярком солнце. Палочками трудно было писать замысловатые фигуры. Поэтому вавилонские письмена состояли из маленьких клинышков.
— Скажите, — спросил Сева, — в Вавилоне тоже писали числа буквами?
— Нет, — ответила Четвёрка, — у вавилонян, в отличие от славян, существовали цифры, с помощью которых они записывали числа. Цифры изображались в виде тоненькой палочки с маленьким треугольничком наверху:
— Совсем как гвоздик! Со шляпкой!
— Действительно, похоже на гвоздик, — согласилась Четвёрка. — Только у гвоздика одна шляпка, а у цифр могло быть много. Вот как писались девять вавилонских цифр:
— Смотрите, у девятки целый шляпный магазин! — обрадовалась Таня.
— Их очень легко сосчитать, эти шляпки, — сказал Олег.
— Это потому, что их не больше девяти. А вот сорок треугольников, пожалуй, и не сосчитаешь, — ответил Сева.
— А зачем же надо считать сорок треугольников? — удивилась Четвёрка. — Ведь для цифры десять у них был другой, простой знак. Вот такой:
Если нужно было написать двадцать, выдавливались два таких знака. А двадцать четыре писали, как и мы сейчас, — сперва число десятков, а затем число единиц. Вот так:
— Да это и в самом деле проще иероглифов, — обрадовался Сева.
— Это не только проще, но это уже похоже и на наш способ написания чисел. Справа единицы, а за ними десятки, потом сотни… Словом, все цифры становятся на свои позиции, как в строю. Потому этот способ и называется позиционным.
— Значит, мы записываем числа позиционным способом? — спросила Таня.
— Конечно, — ответила Четвёрка. — И начало этому положено в Вавилоне.
— Понимаю, — добавил Сева, — у нас счёт вавилонский…
— Вот и неверно, — остановила его Четвёрка. — Счёт у нас не вавилонский, а свой, особенный. Ведь мы считаем по десятичной системе, а у вавилонян была шестидесятиричная!
— Это как же так? — спросил Сева.
— А вот как: возьмём какое-нибудь число, ну, например, 3662. В нашей системе двойка здесь обозначает число единиц, за ней стоит шестёрка — это число десятков, а следующая шестёрка — число сотен, наконец, тройка — число тысяч.
Значит, это число можно бы написать и так:
3000+600+60+2=3662.
А у вавилонян всё совсем по-другому. Если бы они знали арабские цифры, они бы это число записали так:
1 1 2.
По их системе двойка, как и у нас, остаётся числом единиц — первый разряд. А вот стоящая слева от неё единица — это не число десятков, а число шестидесятков — второй разряд. А следующая единица — уже число 60×60=3600 — третий разряд. Заметьте, что между разрядами нужно обязательно оставлять свободное место, иначе можно легко запутаться, что, кстати, частенько случалось.
Таким образом, наше число по вавилонской системе выглядело бы так:
3600+60+2=3662.
Вот как они считали, — закончила Четвёрка.
— Ой, как трудно! Хорошо, что у нас так никто не считает! — воскликнула Таня.
— Ошибаетесь, — поправила её Четвёрка. — Вы тоже считаете так… иногда.
— Я? Никогда!
— А я вам сейчас напомню. Скажите, пожалуйста, сколько в часе минут?
— Минут? Шестьдесят.
— Так. А сколько в часе секунд?
— Сейчас скажу. Шестьдесят на шестьдесят… Три тысячи шестьсот, — сосчитала Таня.
— Вот видите. Вы же делите часы и минуты не на десять частей, а на шестьдесят! Значит, и вы считаете по шестидесяткам!
Таня только руками развела:
— Вот не знала, что у нас осталось что-то от Древнего Вавилона!