Автобиография
Автобиография читать книгу онлайн
«Автобиография» — одно из лучших произведений сербского прозаика и комедиографа Бранислава Нушича (1864–1938) — была написана в 1924 году.
Непосредственным поводом для ее создания послужил отказ Сербской академии принять писателя в свои члены. В одном из писем той поры Нушич рассказал о причинах, по которым он не был избран:
«Академия, как мне стало известно, обнаружила, что я недостаточно «академическая фигура» нечто совсем иное, нечто такое, от чего я действительно весьма далек. «Академическая фигура» — это тот, кто тридцать лет роется в старых книгах и после упорного труда делает открытие, что Досифей (то есть Досифей Обрадович — сербский просветитель XVIII века) впервые посетил Х. не 14 апреля, как до сих пор считалось, а 27 марта; «академическая фигура» — это тот, кто десятки лет собирает в каком-нибудь уезде народные сказки о святом Савве; «академическая фигура» четыре или пять десятилетий копается в истории сербов, чтобы написать потом брошюру в семь страничек; «академическая фигура» переворачивает чужие архивы, залезает в чужие письма, в чужие книги и уточняет даты смерти в биографиях. Словом, «академическая фигура» — это тот бессмертный, который умирает еще при жизни, чье имя забывается после первых же поминок».
Кандидаты в академики обязаны были писать автобиографии. Пародируя это правило, Нушич и создал свою «Автобиографию».
Следует отметить, что лишь в 1933 году Академия сочла возможным «удостоить» талантливого писателя звания академика.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Вы, может быть, станете смеяться над этими задачами, считая их плодом досужей фантазии, порожденным стремлением дискредитировать математику как науку. Но по отношению к математике это вовсе не фантазия. Попробуйте обратиться к любому математику с просьбой объяснить задачу Зенона. Но только послушайтесь доброго совета и прежде, чем обращаться к математику, примите дозу брома для успокоения нервов, ибо он начнет вам доказывать такие вещи, что ваша рука инстинктивно потянется к какому-нибудь предмету — к стулу, пивной кружке или, на худой конец, просто к кирпичу, и в душе вашей вспыхнет желание раскроить математику череп.
Этот Зенон — якобы знаменитый греческий философ — был помешан на математике. Он жил за несколько столетий до рождения Христа и уже тогда, двадцать четыре века назад, придумал одну математическую задачу, над которой по сей день ломают голову все, кто знает математику, хотя те, кто математики не знает, давным-давно ее решили. Зенон математически доказал, что заяц никогда не догонит черепаху. Он утверждал: если черепаха двинется с места, а заяц подождет, пока она отойдет на сто метров, и затем бросится за нею, то пока заяц пробежит пятьдесят метров, черепаха проползет несколько шагов и тем увеличит расстояние, а пока заяц преодолеет половину нового расстояния, черепаха опять проползет несколько шагов и опять между ними сохранится расстояние. И так до бесконечности. В жизни, разумеется, ясно как день, хоть бейся об заклад, что заяц не только догонит, но перегонит и оставит черепаху далеко позади себя, но в математике это невозможно.
У меня есть один приятель математик. Во имя нашей дружбы, здравого смысла и человечности я умолял его признать, что заяц может догнать черепаху, но он упорно стоял на своем.
— В жизни может, а в математике не может!
Когда я уже впал в отчаяние, несмотря на то что перед этим принял две дозы брома, и стал заклинать его внять голосу дружбы, он наконец согласился на некоторый компромисс:
— Оно, конечно, может быть! Вероятно, можно и математически доказать, что если заяц будет бежать за черепахой год или больше, он догонит ее. Но это бесконечно долгие и очень сложные расчеты, так что и заяц, и черепаха, и ученик, которому задали бы такую задачу, и учитель, задавший ее, умерли бы раньше, чем эти расчеты были бы закончены.
Но заяц и черепаха Зенона — это далеко не единственный случай, когда математика не признает того, что совершенно очевидно. Она берет, например, мяч и спрашивает вас:
— Этот мяч круглый?
— Абсолютно круглый! — уверенно отвечаете вы.
— Э, нет! — говорит математика. — С математической точки зрения этот мяч не круглый.
Точно так же, показывая на линию, прямую как стрела, математика говорит вам, что она не совсем прямая; поверхность, гладкую как стекло, она не признает ровной, и, наконец, в своем безудержном стремлении отрицать она заходит так далеко, что сама начинает оспаривать то, чему вас учила. В то время, как на уроках геометрии вас учат, что параллельные линии — это линии, которые отстоят друг от друга на одинаковом расстоянии и никогда не пересекаются, высшая математика доказывает, что параллельные линии в бесконечности пересекаются.
Когда я спросил своего приятеля, почему математика не признает того, что можно видеть собственными глазами и щупать собственными руками, он мне ответил:
— Математика не верит чувствам!
Сначала я не мог примириться с тем, что наука не признает того, что человек видит своими глазами, но потом я вспомнил, что и в жизни это часто бывает. Помню, например, такую «математическую» любовь старейшины белградской богемы, моего друга Чичи-Ильи Станоевича. У Чичи была приятельница, которую, если принять во внимание его возраст и образ жизни, истощивший его измученное тело, можно было бы назвать даже слишком молодой. Вероятно, поэтому Чича-Илья, вернувшись однажды домой после полуночи, обнаружил возле дверей своей спальни пару фельдфебельских сапог. Можете себе представить, до какой степени эти сапоги потрясли душу артиста. Вне себя от гнева он бросился в спальню и там, на своей собственной кровати, на своей собственной подушке увидел своими собственными глазами фельдфебеля без сапог. Артист затрясся всем телом, и перед глазами его заиграли кровавые круги. Какое-то мгновение, какую-то долю секунды размышлял он, как отомстить за обиду. В тот момент он видел только два способа: или пойти в коридор, принести сапоги и попросить фельдфебеля надеть их и освободить ему место, или, не беспокоя фельдфебеля, вернуться в кафану [25] и там поискать утешения. Он избрал второй путь, надеясь, что это будет самая тяжелая, самая суровая кара для изменницы, и ушел, даже не бросив прощального взгляда на свою собственную подушку, на которой покоились их головы. Он пил три дня и три ночи, и все время его мучила неутолимая жажда. Он покидал одну кафану и шел в другую, но его не покидало желание пить. На четвертый день он получил открытку, адресованную: «Господину Илье Станоевичу, артисту. Белград. Кафана «Русский царь». До востребования». Открытка была от нее. «Дорогой Чича, — писала она, — то, что ты видел, неправда», и так далее.
Как видите, математический принцип игнорирования чувств нашел в этой любви самое достойное применение. А поскольку Чича-Илья глубоко уважал науку во всех ее проявлениях, то, получив столь убедительное математическое доказательство, он вернулся домой.
Но помимо известных и неизвестных величин, имеющих конец и бесконечных, мнимых и комплексных, которые, как видите, окончательно помутили нам рассудок, в математике были и другие чудовища: драконы, стоножки, псоглавцы, каракатицы, крокодилы, медузы, скорпионы, церберы, головастики, акулы и сверх того ректификация круга, как змей с семью головами, изрыгающими семь языков пламени. Ректификация круга возвышалась над ними, как неприступная вершина Гималаев, взойти на которую пытались разные экспедиции, но пропадали без вести, скатывались в пропасти, гибли во время обвалов и умирали от голода в сугробах, а вершина Гималайских гор по-прежнему оставалась недоступной и неизвестной человечеству.