Искусство схемотехники. Том 1 (Изд.4-е)
Искусство схемотехники. Том 1 (Изд.4-е) читать книгу онлайн
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры; внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 1 содержит сведения об элементах схем, транзисторах, операционных усилителях, активных фильтрах, источниках питания, полевых транзисторах. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Применяя ПТ для регулировки усиления, а именно в схемах АРУ или модуляторов, т. е. устройств, в которых амплитуда высокочастотного сигнала меняется пропорционально сигналу звуковой частоты, есть смысл обратиться также к ИМС «аналогового умножителя». Это — высокоточные устройства с хорошим динамическим диапазоном, обычно применяются для получения произведения двух напряжений. Один из этих сомножителей может быть управляющим сигналом постоянного тока, устанавливающим масштабный множитель для второго входного сигнала, т. е. коэффициент усиления.
В аналоговом умножителе используется зависимость gm от IК, свойственная биполярному транзистору (gm = [IК(мА)/25] См), и применяются группы согласованных транзисторов, чтобы избежать проблем разброса параметров и сдвига. На очень высоких частотах (100 МГц и выше) часто для этой же цели лучше использовать простые пассивные «балансные смесители» (разд. 13.12).
Важно помнить, что ПТ в смысле проводимости ведет себя при малых напряжениях UСИ как линейное сопротивление, а не как источник тока, что характерно для коллектора биполярного транзистора, и он работает как сопротивление во всем диапазоне до 0 В между истоком и стоком (здесь нет ни диодных перепадов, ни чего-нибудь в этом роде, о чем стоило бы беспокоиться). Существуют ОУ и семейства логических элементов (КМОП), в которых используется это полезное свойство, так что насыщение на выходе у этих схем наступает именно на уровне напряжения питания.
Ключи на ПТ
Две первые схемы на ПТ, которые в качестве примера мы привели в начале этой главы, были ключами: схема логического ключа и схема переключателя линейного сигнала. Они попадают в перечень наиболее важных применений ПТ, и в них используются те преимущества, которые дают уникальные характеристики ПТ: высокое полное сопротивление затвора и резистивный характер проводимости в обоих направлениях, четко просматривающийся вплоть до напряжения 0 В. На практике обычно используют МОП-транзисторные интегральные микросхемы (а не схемы на дискретных транзисторах) во всех цифровых и линейных ключах, и только для мощных ключей дискретные ПТ предпочтительнее. Однако и в этих случаях важно (и интересно!) понимать, как работают эти чипы; в противном случае вы почти гарантированы пасть жертвой какого-нибудь загадочного ненормального поведения схемы.
3.11. Аналоговые ключи на ПТ
Очень часто ПТ, в основном МОП-транзисторы, применяются в качестве аналоговых ключей. В силу таких свойств, как малое сопротивление в проводящем состоянии («ВКЛ») при любом напряжении сигнала вплоть до 0 В, крайне высокое сопротивление в состоянии отсечки («ВЫКЛ»), малые токи утечки и малая емкость, они являются идеальными ключами, управляемыми напряжением, для аналоговых сигналов. Идеальный аналоговый (или линейный) ключ ведет себя как совершенный механический выключатель: во включенном состоянии пропускает сигнал к нагрузке без ослаблений или нелинейных искажений, в выключенном — ведет себя как разомкнутая цепь. Он имеет пренебрежимо малую емкость относительно земли и вносит ничтожно малые наводки в сигнал от переключающего его уровня, приложенного к управляющему входу.
Рассмотрим пример (рис. 3.35).
Рис. 3.35.
Т1 — n-канальный МОП-транзистор обогащенного типа, не проводящий ток при заземленном затворе или при отрицательном напряжении затвора. В этом состоянии сопротивление сток-исток (Rвыкл), как правило, больше 10000 МОм, и сигнал не проходит через ключ (хотя на высоких частотах будут некоторые наводки через емкость сток-исток; подробнее об этом см. дальше). Подача на затвор напряжения +15 В приводит канал сток-исток в проводящее состояние с типичным сопротивлением от 25 до 100 Ом (Rвкл) для ПТ, используемых в качестве аналоговых ключей. Схема не критична к значению уровня сигнала на затворе, поскольку он существенно более положителен, чем это необходимо для поддержания малого Rвкл, и поэтому его можно задавать от логических схем (можно использовать внешний полевой или биполярный транзистор для получения уровней, соответствующих полному диапазону питания) или даже ОУ: вполне годится ± 13 В с выхода схемы 741, так как напряжение пробоя затвора МОП-транзистора обычно равно 20 В или более. Обратное смещение затвора при отрицательных значениях выхода ОУ будет давать дополнительное преимущество-можно переключать сигналы любой полярности, как опишем позже. Заметим, что ключ на ПТ-двунаправленное устройство, т. е. он может пропускать сигнал в обе стороны. Это легко понять, так как механический выключатель тоже обладает этим свойством.
Приведенная схема будет работать при положительных сигналах, не выше 10 В; при более высоком уровне сигнала напряжение на затворе будет недостаточным, чтобы удержать ПТ в состоянии проводимости (Rвкл начинает расти); отрицательные сигналы вызовут включение ПТ при заземленном затворе (при этом появится прямое смещение перехода канал-подложка; см. разд. 3.02). Если надо переключать сигналы обеих полярностей (т. е. в диапазоне от —10 до +10 В), то можно применить такую же схему, но с затвором, управляемым напряжением -15 В (ВЫКЛ) и +15 В (ВКЛ); подложка должна быть подсоединена к напряжению -15 В.
Для любого ПТ-ключа сопротивление нагрузки должно быть в диапазоне от 1 до 100 кОм, чтобы предотвратить емкостное прохождение входного сигнала в состоянии «ВЫКЛ», которое имело бы место при большем сопротивлении. Сопротивление нагрузки выбирается компромиссным. Малое сопротивление уменьшит емкостную утечку, но вызовет ослабление входного сигнала из-за делителя напряжения, образованного сопротивлением проводящего ПТ Rвкл и сопротивлением нагрузки. Так как Rвкл меняется с изменением входного сигнала (при изменении UЗИ), это ослабление приведет к некоторой нежелательной нелинейности. Слишком низкое сопротивление нагрузки проявляется также и на входе ключа, нагружая источник входного сигнала. В разд. 3.12 и 4.30 предложены некоторые решения этой проблемы (многоступенчатые ключи, компенсация сопротивления Rвкл). Привлекательная альтернатива — применение еще одного ПТ-ключа, закорачивающего выход на землю, если последовательно включенный ПТ находится в состоянии «ВЫКЛ»; таким образом формируется однополюсный ключ на два направления (подробнее об этом см. в следующем разделе).
Аналоговые ключи на КМОП. Часто необходимо переключать сигналы, сравнимые по величине с напряжением питания. В этом случае описанная выше простая n-канальная схема работать не будет, поскольку при пиковом значении сигнала затвор не будет иметь смещения в прямом направлении. Переключение таких сигналов обеспечивают переключатели на комплементарных МОП-транзисторах (КМОП, рис. 3.36).
Рис. 3.36. Аналоговый ключ на КМОП-транзисторах.
Треугольник на схеме — это цифровой инвертор, который мы вкратце опишем: он преобразует высокий уровень входного сигнала в низкий уровень выходного и наоборот. При высоком уровне управляющего сигнала Т1 пропускает сигналы с уровнями от земли до UСС без нескольких вольт (при более высоких уровнях сигнала Rвкл начинает драматическим образом расти). Аналогично Т2 при заземленном затворе пропускает сигнал с уровнями от UСС до значения на несколько вольт выше уровня земли. Таким образом, все сигналы в диапазоне от земли до UСС проходят через схему с малым сопротивлением (рис. 3.37).