Искусство схемотехники. Том 2 (Изд.4-е)
Искусство схемотехники. Том 2 (Изд.4-е) читать книгу онлайн
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 2 содержит сведения о прецизионных схемах и малошумящей аппаратуре, о цифровых схемах, о преобразователях информации, мини- и микроЭВМ и микропроцессорах. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
U1 управляет инвентирующим усилителем (U2), а значение R3выбирается из соображений компромисса между погрешностью температурного сдвига U1 и погрешностью дрейфа тока смещения U2. Выбранное значение удерживает нагрев в пределах 5,6 мВт (при наихудших условиях 7,5 В на выходе), что ведет к повышению температуры на 0,8 °C (тепловое сопротивление ОУ около 0,14 °C/мВт, см. разд. 6.04) с соответственным сдвигом напряжения 0,3 мкВ. Сопротивление 10 кОм на входе U2 создает погрешность тока смещения, но так как U2 вместе с U3 охвачены петлей обратной связи, сводящей полный сдвиг к нулю, единственный существенный параметр — это температурный дрейф токовой погрешности. Для ОР-77 в паспорте приводятся данные о температурном дрейфе тока смещения (не часто указываемые изготовителями), из которых следует, что вклад дрейфа тока в бюджет погрешности равен 1,6 мкВ/4 °C. Снижение значения R3 уменьшит этот вклад, но ценой увеличения погрешности от нагрева U1.
Как было сказано выше в общем описании схемы, значение R3 таково, что требуется использование причудливого Т-образного звена в обратной связи, чтобы значения резисторов обратной связи оказались в диапазоне номиналов прецизионных проволочных резисторов. Если пользоваться обычный конфигурацией инвентирующего усилителя, то понадобятся резисторы на 100 кОм, 1 МОм и 10 МОм для коэффициента усиления 10, 100 и 1000 соответственно.
Входное полное сопротивление U2 может вызвать некоторые затруднения. При коэффициенте усиления, равном 1000, его дифференциальное входное сопротивление 25 МОм умножается благодаря следящей связи на A/1000 и составляет в замкнутой схеме 125000 МОм. К счастью, это более чем в миллион раз превосходит выходное сопротивление цепи, устанавливающей коэффициент усиления (9,4 кОм), поэтому погрешность будет намного меньше 0,01 %. Это один из худших случаев, который можно себе представить, но даже и здесь входное сопротивление ОУ не создает проблем. Отсюда видно, что входное сопротивление ОУ не создает никаких эффектов, которые стоило бы учитывать.
Дрейф напряжения сдвига U1 и U2 от времени, температуры и напряжения питания влияют на суммарную погрешность в равной степени, и их значения приведены в бюджете. Укажем, здесь что они автоматически компенсируются в каждом «обнуляющем» цикле, поэтому играет роль только кратковременный дрейф. Эти погрешности благодаря качеству ОУ лежат в микровольтовом диапазоне. U3 имеет несколько больший дрейф, но его приходится брать ПТ-типа, чтобы обеспечить малые значения тока утечки конденсатора. Так как выходной сигнал U3 ослабляется пропорционально выбранному коэффициенту, то эта погрешность, отнесенная ко входу, при больших коэффициентах усиления ослабляется. Это важный факт, поскольку большие коэффициенты усиления употребляются при низких уровнях сигнала, для которых требуется большая точность. Погрешности, создаваемые U3 на выходе, всегда одинаковы, поэтому они специфицируются в бюджете погрешностей как выходные погрешности (приведенные к выходу).
Обратите внимание на некоторые общие принципы проектирования, которые проясняются на этом примере: вы решаете некоторый набор задач, выбирая конфигурацию и элементы так, чтобы уменьшить погрешности до приемлемых значений. При этом необходимо идти на некоторые компромиссы и уступки, при этом их выбор зависит от внешних факторов (например, использование в качестве повторителя ОУ с ПТ-входом предпочтительнее, если полное сопротивление источника сигнала больше 50 кОм). В табл. 7.2 содержатся данные ОУ, которые можно использовать при проектировании прецизионных схем.
7.07. Выходные погрешности усилителя
Как указывалось в гл. 4, операционные усилители имеют существенные ограничения, связанные с их выходным каскадом. Ограниченная скорость нарастания, нелинейные искажения выходного сигнала (см. разд. 2.15), конечное выходное сопротивление разомкнутого контура могут причинить неприятности и, если их не учитывать, привести к ошеломляюще большим погрешностям прецизионной схемы.
Скорость нарастания: общие соображения. Как отмечалось в разд. 4.11, изменения напряжения выходного сигнала ОУ могут происходить со скоростью, не превышающей некоторого максимума. Этот эффект порождается схемой частотной коррекции ОУ, как увидим при более детальном анализе. Одним из следствий конечности скорости нарастания является ограничение амплитуды выходного сигнала на высоких частотах, равное, как было показано в разд. 4.12 и как видно на рис. 7.6, UПП = S/πf, где UПП — полный размах сигнала.
Рис. 7.6. Частотная зависимость максимального размаха сигнала на выходе ОУ.
Второе следствие лучше всего объяснить с помощью графика зависимости скорости нарастания от напряжения дифференциального входного сигнала (рис. 7.7).
Рис. 7.7. Для получения полной скорости нарастания ОУ требуется значительное дифференциальное входное напряжение.
Смысл его в том, что схема, требующая большой скорости нарастания, работает с существенными напряжениями между входными клеммами ОУ. Это может привести к катастрофическим последствиям в схеме, претендующей на высокую точность.
Чтобы понять, чем определяется скорость нарастания, заглянем внутрь операционного усилителя. Подавляющее большинство ОУ могут быть смоделированы схемой, изображенной на рис. 7.8.
Рис. 7.8. Типичная схема частотной коррекции ОУ.
Дифференциальный входной каскад, нагруженный на токовое зеркало, возбуждает каскад с большим коэффициентом усиления по напряжению и с корректирующим конденсатором между выходом и входом. Выходной каскад — пушпульный повторитель с единичным коэффициентом усиления. Корректирующий конденсатор выбирается так, чтобы коэффициент усиления разомкнутой петли усилителя становился равным единице раньше, чем сдвиг фазы, вызванный остальными каскадами усилителя, станет существенным.
Таким образом, С выбирается таким, чтобы fср, полоса частот единичного коэффициента усиления, была близка к полюсу, с которого начинается спад усиления следующего каскада, как описывалось в разд. 4.34. Входной каскад имеет очень высокое выходное сопротивление и для следующего каскада является источником тока.
В операционных усилителях возникает ограничение скорости нарастания, когда выходной сигнал возбуждает один из транзисторов дифференциального каскада почти до насыщения, действуя на следующий каскад полным током эмиттера в дифференциальной паре. Это происходит при дифференциальном входном напряжении около 60 мВ, при котором соотношение токов в дифференциальном каскаде равно 10:1. В этот момент напряжение коллектора Т5 изменяется с максимально возможной скоростью, а весь ток Iэ идет на заряд конденсатора С. Таким образом, Т5 и С образуют интегратор с ограниченной скоростью нарастания на выходе. Выведем выражение скорости нарастания.
Скорость нарастания: детальное рассмотрение. Прежде всего напишем выражение для коэффициента усиления разомкнутого контура по напряжению при малом сигнале переменного тока без учета сдвигов фаз: