-->

...И мир загадочный за занавесом цифр. Цифровая связь

На нашем литературном портале можно бесплатно читать книгу ...И мир загадочный за занавесом цифр. Цифровая связь, Попов Георгий Леонтьевич-- . Жанр: Радиоэлектроника. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
...И мир загадочный за занавесом цифр. Цифровая связь
Название: ...И мир загадочный за занавесом цифр. Цифровая связь
Дата добавления: 16 январь 2020
Количество просмотров: 317
Читать онлайн

...И мир загадочный за занавесом цифр. Цифровая связь читать книгу онлайн

...И мир загадочный за занавесом цифр. Цифровая связь - читать бесплатно онлайн , автор Попов Георгий Леонтьевич

Книга в занимательной форме рассказывает о проблемах цифровой связи. Открывает удивительный мир двух цифр: 0 и 1, с помощью которых можно «спрятать» в электронный «шкафчик» многотомные издания А. Дюма, разгадать тайну знаменитой Джоконды, «законсервировать» или передать на расстояние речь, музыку, изображение. Знакомит с линиями передачи цифровой информации, цифровыми многоканальными системами передачи. Для любознательных читателей, для молодежи, выбирающей профессию, и всех, кто интересуется современными телекоммуникациями, будет полезна студентам высших и средних учебных, заведений.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 40 41 42 43 44 45 46 47 48 ... 65 ВПЕРЕД
Перейти на страницу:

Благополучно начавшуюся карьеру прервала франко-прусская война. В 1870 г. Жан Бодо был призван в армию, получил чин лейтенанта, а вместе с ним под свое начало подразделение оптического телеграфа.

Исход войны оказался драматичным для Франции. В 1871 г. был подписан унизительный для нее Франкфуртский мир. Потрясенный прусским нашествием 26-летний Жан Бодо решил не возвращаться в Париж и, демобилизовавшись из армии, уехал в город Бордо и поступил там на телеграф. Однако расставание с Парижем оказалось недолгим. Выдающиеся способности молодого механика были быстро замечены, и уже в 1872 г. управляющий телеграфом содействовал переводу Бодо снова в Париж, на центральный телеграф. Вновь начинается парижский, на этот раз поистине блестящий период деятельности французского изобретателя.

...Париж. Уже два года работает Бодо на центральном телеграфе. Он полон честолюбивых замыслов и желания усовершенствовать телеграфный аппарат. Бодо уже пришел к твердому и окончательному выводу об оптимальности разработанного им 5-разрядного двоичного кода для передачи телеграфных сигналов. Взяв этот код за основу, он напряженно искал пути более эффективного использования телеграфного провода. Как подключить к проводу сразу два аппарата, чтобы они не мешали один друг ому? - такая мысль неотступно преследовала его.

1874 г. принес французскому механику небывалый успех. Запатентована первая в мире двухкратная система телеграфирования. Достижение означало, что отныне но одному, подвешенному на опорах проводу (вторым проводом, напомним, была земля) могли одновременно и независимо работать два аппарата. Изобретатель не останавливается на этом. Через два года, в 1876 г., он предлагает пятикратную систему телеграфирования. Теперь к одному проводу подключается сразу пять аппаратов. В 1877 г. вводится в действие первая в мире линия многократного телеграфирования Париж-Бордо. С этого времени многократный телеграф начал победное шествие по всему свету.

Всю свою жизнь Жан Бодо улучшал телеграфную аппаратуру. Его заслуги признаны и оценены потомками. В его честь названа единица скорости телеграфирования - Бод, определяемая как одна элементарная посылка (импульс) тока за 1 с. Почти целый век, вплоть до 50-х годов XX столетия, изобретение Бодо в его первозданном виде исправно служило людям, а сейчас на его основе создаются самые совершенные системы передачи цифровой информации.

Принцип использования телеграфной линии сразу несколькими аппаратами был довольно прост. На передающей и приемной станциях устанавливались абсолютно одинаковые устройства, их называли распределителями. Распределитель представлял собой круглый диск, на котором укреплялись неподвижные контакты-ламели. К каждой ламели подключался свой телеграфный аппарат (ТгА, см. рисунок).

...И мир загадочный за занавесом цифр. Цифровая связь - _101.jpg

Кроме неподвижных контактов на диске имелся один подвижный - щетка, - связанный с телеграфным проводом. Щетка приводилась в движение мотором. Вращаясь вокруг своей оси, она поочередно касалась каждой неподвижной ламели и таким путем соединяла подключенный к ламели телеграфный аппарат с проводом. Каждому аппарату провод предоставлялся периодически на короткое время - на то время, пока щетка скользила по ламели.

Очевидно, связать передающий и приемный аппараты друг с другом можно только тогда, когда щетки обоих распределителей одновременно пройдут по ламелям, принадлежащим этим аппаратам. Чтобы не путаться, аппараты на передаче и приеме подключают к идентичным ламелям.

Вы, вероятно, уже сообразили, что главное здесь - вращение щеток распределителей с одной и той же скоростью. И начинать свое вращение они должны, конечно же, с одинаковых положений, например с первых ламелей. Если не выполнить последнее условие и, скажем, заставить передающую щетку начать движение с первой ламели, а приемную щетку - со второй, то 1 -й аппарат на передающей станции окажется связанным со 2-м аппаратом на приемной станции, 2-й передающий аппарат - с 3-м приемным аппаратом и т.д. Возникает полная неразбериха, образно говоря, испорченный телефон.

Вращение щеток с одной и той же скоростью называется синхронным (от греческого σνγχρoνoς  - одновременный), а при совпадении их начальных положений еще и синфазным.

Что же можно успеть передать и принять за тот миг, пока аппараты подключены к проводу? Да практически все, что нужно. Взгляните на рисунок. Двоичные импульсы поступают с телеграфных аппаратов каждый своим чередом, со своей скоростью. И за то время, пока на каждом аппарате "стоит" свой импульс, щетка передающего распределителя успевает поочередно "опросить" все аппараты. Следовательно, за этот промежуток времени по проводу передаются "кусочки" импульсов от всех аппаратов.

Вас тревожит, что импульсы в телеграфной линии оказались "укороченными"? Ну, это не беда. Как говорится, "в тесноте, да не в обиде". Электромагниты приемников все равно успеют зафиксировать их. Зато однопроводная телеграфная линия стала использоваться эффективнее: ведь теперь по ней могут "переговариваться" одновременно, не мешая друг другу, несколько пар абонентов.

Обратите внимание, скорость передачи двоичных цифр в телеграфном проводе возросла - она стала больше той, которая имела бы место при подключении к проводу только одного передатчика и одного приемника (в примере на рисунке - в 4 раза).

А сколько телеграфных аппаратов можно подключить таким способом к одному проводу или, иными словами, до какой степени можно "укорачивать" передаваемые импульсы? Это определяется несколькими факторами. Прежде всего тем, какой длительности импульсы способно зарегистрировать приемное устройство. Во времена Бодо в приемниках телеграфных аппаратов использовались электромагниты. Ясно, что они не могли фиксировать очень короткие импульсы, поэтому к проводу нельзя было подключать более 5-9 телеграфных аппаратов. Скорость передачи двоичных цифр в линии была невысока - 75-100 бит/с. Вот и успевали за минуту передать лишь 800-1200 букв или других знаков. Современные же электронные устройства регистрации умеют "ловить" чрезвычайно короткие импульсы, например такие, которые образуются лишь при скоростях в сотни мегабит в секунду.

Кроме того, для распространения по линии коротких импульсов (а это значит - передача высокоскоростная) она должна быть широкополосной, скажем, такой, как спутниковая или оптическая. Наконец, когда с линией соединено много аппаратов, механические распределители не будут успевать "обслуживать" их. Нужны быстродействующие "электронные щетки". Значит, если использовать электронные регистраторы сверхкоротких импульсов, "быстрые" электронные распределители и современные линии связи, то окажется возможным предоставлять линию сразу многим абонентам. И притом не десяткам, а сотням и даже тысячам.

Изобретение Ж. Бодо, появившись на свет в эпоху примитивных телеграфных аппаратов и "столбовых" телеграфных линий, спустя столетие, в век электроники и компьютеров, обрело новую жизнь в виде современнейших, сплошь начиненных микросхемами систем передачи. В них движущиеся к одним и тем же пунктам "хилые" потоки цифровой информации от отдельных источников - людей, компьютеров и т. п. - собираются в мощный поток цифр, "бешено" несущихся по скоростной (подземной, космической или другой) супермагистрали. Таков наш стремительный век.

Сейчас обратимся к техническим терминам. Не пугайтесь, мы не собираемся ими подавлять вас. Говоря языком инженеров, Бодо организовал для каждой пары телеграфных аппаратов свой канал связи. На рисунке их четыре. Канал не существует постоянно, все время. Вы видите, что связь между аппаратами периодически прерывается. Она возникает только в строго определенные, отведенные для данной пары аппаратов, промежутки времени, которые так и называют "канальные". Ущерба в этом нет никакого: ведь каждый импульс (неважно, что он "укороченный") успевает "добежать" по проводу до приемника.

1 ... 40 41 42 43 44 45 46 47 48 ... 65 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название