Самоучитель по радиоэлектронике
Самоучитель по радиоэлектронике читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
У конденсаторов переменной емкости проверяют плавность вращения ротора, отсутствие заеданий и люфтов. Конденсаторы переменной емкости проверяют на пробой при плавном повороте ротора. Проверить конденсатор на пробой можно и на специальной испытательной установке, прикладывая между выводами и каждым выводом и корпусом повышенное напряжение, превышающее номинальное в 1,5–3 раза в течение 10–60 с в зависимости от типа конденсатора.
4.4.3. Проверка катушки индуктивности
Проверка исправности катушек индуктивности начинается с внешнего осмотра, в ходе которого необходимо убедиться в исправности каркаса, экрана, выводов; в правильности и надежности соединений всех деталей катушки; в отсутствии видимых обрывов проводов, замыканий, повреждения изоляции и покрытий. Особое внимание следует обращать на места обугливания изоляции, каркаса, почернение или оплавление заливки.
Электрическая проверка катушек индуктивности включает проверку на обрыв, поиск короткозамкнутых витков и определение износа изоляции обмотки. Проверка на обрыв выполняется омметром. Увеличение сопротивления означает обрыв или плохой контакт одной или нескольких жил литцендрата. Уменьшение сопротивления свидетельствует о межвитковом замыкании. При коротком замыкании выводов сопротивление равно нулю. Для более точного представления о неисправности элемента необходимо измерить индуктивность. В заключение рекомендуется, проверить работоспособность катушки в исправном аппарате, подобном тому, для которого она предназначена.
4.4.4. Проверка трансформаторов и дросселей
По конструкции и технологии изготовления силовые трансформаторы, трансформаторы и дроссели НЧ весьма похожи. Все они состоят из обмоток, выполненных изолированным проводом, и сердечника. Проверку начинают с внешнего осмотра, в ходе которого находят и устраняют все видимые механические дефекты.
Проверка на короткое замыкание между обмотками, между обмотками и корпусом производится с помощью омметра (рис. 4.6а,б). Прибор включают между выводами разных обмоток, а также между одним из выводов и корпусом. Так же проверяется и сопротивление изоляции, которое должно быть не менее 100 МОм для герметизированных трансформаторов и не менее десятков мегаом для негерметизированных.
Рис. 4.6. Схемы проверки трансформатора на замыкание между обмоткой и сердечником (а), между обмотками (б), проверка коэффициента трансформации на холостом ходу (в)
Самая сложная проверка на межвитковые замыкания. Существует несколько способов проверки трансформаторов:
1. Измерение омического сопротивления обмотки и сравнение результатов с паспортными данными. (Способ простой, но не слишком точный, особенно при малой величине омического сопротивления обмоток и небольшом количестве короткозамкнутых витков.)
2. Проверка коэффициентов трансформации на холостом ходу (рис. 4.6в). Коэффициент трансформации определяется как отношение напряжений, показываемых вольтметрами 2 и 1. При наличии межвитковых замыканий (изображено пунктиром) коэффициент трансформации будет меньше нормы.
3. Измерение индуктивности обмотки.
4. Измерение потребляемой мощности на холостом ходу. У силовых трансформаторов одним из признаков короткозамкнутых витков является чрезмерный нагрев обмотки.
Наиболее точные результаты получают, используя приборные способы проверки:
5. Проверка катушки с помощью специального прибора — анализатора короткозамкнутых витков.
6. Проверка трансформатора по форме выходной синусоиды, так называемая «частотная прогонка». Так проверяются трансформаторы питания НЧ (40–60 Гц), трансформаторы питания импульсных блоков питания (8-40 кГц), разделительные трансформаторы типа ТДКС (13–17 кГц), разделительные трансформаторы мониторов (CGA 13–17 кГц, EGA 13–25 кГц, VGA 25–50 кГц).
Для этого, например, разделительный трансформатор строчной развертки необходимо подключить согласно рис. 4.7 и подать на обмотку I синусоидальное напряжение 5-10 В частотой 10-100 кГц через конденсатор С емкостью 0,1–1,0 мкФ. На обмотке II, используя осциллограф, можно наблюдать форму выходного напряжения.
«Прогнав» на частотах от 10 до 100 кГц генератор НЧ, нужно, чтобы на каком-то участке получилась чистая синусоида (рис. 4.8а) без выбросов и «горбов» (рис. 4.8б).
Наличие эпюр во всем диапазоне (рис. 4.8в) говорит о межвитковых замыканиях в обмотках. Данная методика с определенной степенью вероятности позволяет отбраковывать трансформаторы питания, различные разделительные трансформаторы, частично строчные трансформаторы. Важно лишь подобрать частотный диапазон.
Рис. 4.7. Схема проверки трансформатора по форме выходной синусоиды
Рис. 4.8. Формы наблюдаемых сигналов
7. Проверка трансформатора, используя явление резонанса. Для проверки нужно собрать схему для параллельного (рис. 4.9а) или последовательного (рис. 4.9б) резонанса. Изменяя частоту генератора, нужно добиться резкого увеличения (в 2 раза и выше) амплитуды колебаний на контрольном устройстве (экран осциллографа или шкала вольтметра переменного тока). Это указывает, что частота внешнего генератора соответствует частоте внутренних колебаний LC-контура. Отсутствие или срыв колебаний (достаточно резкий) при изменении частоты генератора НЧ указывает на резонанс.
Рис. 4.9. Схема проверки трансформатора при использовании параллельного (а) и последовательного (б) резонанса
Для проверки закоротите обмотку II трансформатора. Колебания в LC-контуре исчезнут. Из этого следует, что короткозамкнутые витки срывают резонансные явления, чего мы и добивались. Наличие кнутых витков в катушке также приведет к невозможности наблюдать резонансные явления в LC-контуре.
Отметим, что для проверки импульсных трансформаторов блоков питания конденсатор С должен иметь емкость 0,01-1 мкФ. Частота генерации подбирается опытным путем.
4.4.5. Проверка полупроводниковых диодов
Простейшая проверка исправности полупроводниковых диодов заключается в измерении их прямого (Rпр) и обратного (Rобр) сопротивлений постоянному току. Чем меньше прямое сопротивление и больше обратное сопротивление, или, другими словами, чем выше отношение Rобр/Rпр, тем выше качество диода. Для измерения диод подключают к тестеру (омметру), как показано на рис. 4.10. При этом выходное напряжение измерительного прибора не должно превышать максимально допустимого для данного элемента.
Рис. 4.10. Схема проверки исправности диода: измерение прямого (а) и обратного (б) сопротивлений
Прямое сопротивление должно быть не больше 200 Ом, а обратное не меньше 500 кОм. Следует иметь в виду, что если прямое сопротивление — около нуля, а обратное стремится к бесконечности, то в первом случае имеется пробой, а во втором — обрыв выводов или нарушение структуры. Сопротивление диода переменному току меньше прямого сопротивления и зависит от положения рабочей точки.