Искусство схемотехники. Том 1 (Изд.4-е)
Искусство схемотехники. Том 1 (Изд.4-е) читать книгу онлайн
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры; внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 1 содержит сведения об элементах схем, транзисторах, операционных усилителях, активных фильтрах, источниках питания, полевых транзисторах. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
В связи с тем что большой выходной конденсатор обеспечивает основной полюс для компенсации, использован некомпенсированный операционный усилитель. Обратите внимание на необычную токоограничивающую схему и обильное использование «диодов» стабилизации тока (на самом деле использование полевых транзисторов с p-n-переходом) для получения рабочего смещения. Обратите внимание также на применение проводников «считывания» напряжения на нагрузке. В прецизионной схеме типа этой большую роль играют пути земли, поскольку, например, нагрузочный ток 100 мА, протекающий по одному дюйму провода калибра 20, дает падение напряжения 100 мкВ, что составляет ошибку порядка 10-4 на 1В выхода!
Представленная схема имеет превосходные технические характеристики, — ее шумы и дрейф, по крайней мере, в 100 раз меньше, чем приведенные ранее типовые. По данным фирмы EVI, которая любезно предоставила нам эту схему, шумы и фон схемы лежат ниже 1 мкВ, ТКС ниже 1·10-6/°С, выходной импеданс ниже 1 мкОм и дрейф менее 1·10-6 за рабочий день. В следующей главе мы побольше поговорим о таких прецизионных и малошумящих схемах.
6.22. Микромощные стабилизаторы
Как мы уже ранее упоминали, можно спроектировать схему с батарейным питанием с очень низким током покоя, порядка десятков микроампер. Это как раз то, что нужно, чтобы сделать схему, которая работала бы в течение нескольких месяцев или лет от одной маленькой батареи (например, наручные часы или калькулятор). Щелочной 9-вольтовый транзисторный аккумулятор, к примеру, полностью исчерпывает себя после 400 мА·ч работы; следовательно, 50-микроамперная схема будет работать около года (8800 часов). Если для такой схемы потребуется стабилизированное напряжение, то вы, очевидно, не можете позволить себе тратить 3 мА тока покоя в ИС 78L05, поскольку это снизило бы срок службы батареи до недели!
Решить эту проблему можно либо с помощью стабилизатора на дискретных компонентах, либо используя одну из микромощных ИС. К счастью, в последние годы выпускают несколько хороших ИС. Одними из лучших являются стабилизаторы серии LP2950 фирмы National — трехвыводной нерегулируемый стабилизатор 5 В, выпускаемый в небольшом транзисторном корпусе ТО-92 (LP2950ACZ-5.0), или многовыводной регулируемый стабилизатор 1,2-30 В (LP2951). Обе версии имеют ток покоя 75 мкА. Существуют ИС с ее более низким током покоя ICL7663/4 (или МАХ 663/4), регулируемые стабилизаторы на обе полярности с током покоя 4 мкА. В гл. 14 мы рассмотрим микромощные стабилизаторы при обсуждении схем с батарейным питанием.
Как пример того, что можно сделать на дискретных компонентах, на рис. 6.57 мы приводим микромощную схему, которую можно использовать в электростимуляторе сердечной мышцы, работающем от литиевой батареи. Эта схема преобразует входное напряжение в диапазоне от +5 до +3 В (по мере старения батареи) в стабилизированное напряжение +5,5 В.
Рис. 6.57. Микромощный импульсный стабилизатор.
Этот источник имеет ток покоя 1 мкА, обеспечивает стабилизацию по входу и нагрузке 5 % и эффективность преобразования 85 % при полной нагрузке для всего диапазона напряжений батареи, Как мы отмечали при обсуждении импульсных источников, традиционные линейные источники, использующие генератор, удвоитель и последовательный проходной стабилизатор, были бы гораздо менее эффективными, потому что при более высоких нестабилизированных напряжениях потери в стабилизаторе возрастают. Схемы с обратным выбросом эффективны как умножители напряжения с переменным коэффициентом умножения; они дают чрезвычайно высокий КПД и поэтому достаточно привлекательны для использования в микромощных схемах.
На управляемом однопереходном транзисторе 2N6028 собран релаксационный генератор. Его анодный вывод не проводит ток, пока напряжение на нем не превысит напряжение на управляющем электроде на величину падения на диоде; в этот момент он начинает пропускать большой ток, разряжая конденсатор. Результирующий положительный импульс на базе Т2 «тянет» коллектор Т2 к земле, запуская схему 4098, известную под названием «одновибратор» (см. разд. 8.20), которая генерирует положительный импульс постоянной длительности на своем выходе Q. Т3 в этой схеме снимает выходное напряжение и «отнимает» часть разрядного тока у С1, снижая скорость нарастания импульса преобразования энергии до величины, необходимой для поддержания требуемого выходного напряжения. Обратите внимание на большие величины сопротивлений резисторов во всей схеме. Температурная компенсация в данном случае не тема для разговора, поскольку схема работает в условиях постоянной температуры 36,6 °C «передвижной печи». (Предостережение: рекомендуем читателю еще раз заглянуть в «Юридическую справку» в предисловии).
6.23. Преобразователи напряжения с переключаемыми конденсаторами (зарядовый насос)
В разд. 6.19 мы рассмотрели импульсные источники питания, упомянув их странную способность вырабатывать выходное постоянное напряжение, большее чем входное или даже противоположной полярности. Там мы упомянули также, что преобразователи напряжения с переключаемыми конденсаторами могут делать то же самое. Что же это такое «переключаемые конденсаторы»?
На рис. 6.58 показана упрощенная схема КМОП ИС 7662 фирмы Intersil с расширенной вторичной частью (обвязкой).
Рис. 6.58. Инвертор напряжения с переключаемыми конденсаторами. С1 и С2- внешние танталовые конденсаторы емкостью 10 мкФ.
Она имеет внутренний генератор и несколько ключей КМОП; для ее работы необходимы два внешних конденсатора. Если входная пара ключей замкнута (в проводящем состоянии), С1 заряжается до Uвх; затем во время второго полуцикла С1 отключается от входа и подключается в перевернутом состоянии к выходу. Таким образом, он передает свой заряд на С2 (и нагрузку), обеспечивая на выходе напряжение, равное примерно — Uвх. С другой стороны, вы можете использовать 7662 для формирования напряжения 2Uвх, организовав схему таким образом, что С1 будет заряжаться так, как и раньше, но затем на второй половине цикла будет подключаться последовательно с Uвх.
Такой способ переключаемых конденсаторов прост и эффективен; для его реализации необходимо всего несколько компонентов (индуктивности не нужны). Однако выход схемы не стабилизирован и существенно падает при токах нагрузки больше нескольких миллиампер (рис. 6.59).
Рис. 6.59. Выходное напряжение инвертора с переключаемыми конденсаторами под нагрузкой значительно уменьшается.
Кроме того, большинство таких КМОП-приборов имеют ограниченный диапазон напряжений питания; для 7662 Uвх может меняться в диапазоне только от 4,5 до 20 В (от 1,5 до 10 В для ее предшественницы 7660). Наконец, в отличие от индуктивных повышающих и инвертирующих схем, которые могут генерировать любое напряжение, преобразователь напряжения на переключаемых конденсаторах может формировать напряжения кратные Uвх. Несмотря на эти недостатки, преобразователи на свободных конденсаторах при определенных обстоятельствах очень удобны, например, для того чтобы обеспечить питание биполярных операционных усилителей или последовательного порта (см. гл. 10 и 11) на схемной плате, которая имеет питание только +5 В.