-->

Искусство схемотехники. Том 1 (Изд.4-е)

На нашем литературном портале можно бесплатно читать книгу Искусство схемотехники. Том 1 (Изд.4-е), Хоровиц Пауль-- . Жанр: Радиоэлектроника. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Искусство схемотехники. Том 1 (Изд.4-е)
Название: Искусство схемотехники. Том 1 (Изд.4-е)
Дата добавления: 16 январь 2020
Количество просмотров: 501
Читать онлайн

Искусство схемотехники. Том 1 (Изд.4-е) читать книгу онлайн

Искусство схемотехники. Том 1 (Изд.4-е) - читать бесплатно онлайн , автор Хоровиц Пауль

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры; внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 1 содержит сведения об элементах схем, транзисторах, операционных усилителях, активных фильтрах, источниках питания, полевых транзисторах. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов.

 

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Искусство схемотехники. Том 1 (Изд.4-е) - _484.jpg

Рис. 5.8. Фазовая и амплитудно-частотная характеристики 8-полюсного фильтра Чебышева нижних частот. Размах пульсаций (неравномерность) 2 дБ.

Временная область. Свойства фильтров, как и любых других схем переменного тока, могут быть описаны также их параметрами во временнóй области, а именно временем нарастания, выбросом, пульсациями и временем установления. Эти свойства важны, в частности, там, где должны использоваться ступенчатые или импульсные сигналы. На рис. 5.9 показана типичная переходная характеристика фильтра нижних частот.

Искусство схемотехники. Том 1 (Изд.4-е) - _485.jpg

Рис. 5.9.

Здесь время нарастания представляет собой время, необходимое для достижения сигналом 90 % своего конечного значения, в то время как время установления — это время, необходимое для того, чтобы сигнал попал в некоторую окрестность конечного значения и там остался. Выброс и колебания описывают нежелательные свойства фильтра, смысл которых ясен из их названия.

5.05. Типы фильтров

Предположим, что требуется фильтр нижних частот с плоской характеристикой в полосе пропускания и резким переходом к полосе подавления. Окончательный же наклон характеристики в полосе задерживания всегда будет 6n дБ/октава, где n — число «полюсов». На каждый полюс необходим один конденсатор (или катушка индуктивности), поэтому требования к окончательной скорости спада частотной характеристики фильтра, грубо говоря, определяют его сложность.

Теперь предположим, что вы решили использовать 6-полюсный фильтр нижних частот. Вам гарантирован окончательный спад характеристики на высоких частотах 36 дБ/октава. В свою очередь теперь можно оптимизировать схему фильтра в смысле обеспечения максимально плоской характеристики в полосе пропускания за счет уменьшения крутизны перехода от полосы пропускания к полосе задерживания. С другой стороны, допуская некоторую неравномерность характеристики в полосе пропускания, можно добиться более крутого перехода от полосы пропускания к полосе задерживания. Третий критерий, который может оказаться важным, описывает способность фильтра пропускать сигналы со спектром, лежащим в полосе пропускания, без искажений их формы, вызываемых фазовыми сдвигами. Можно также интересоваться временем нарастания, выбросом и временем установления.

Известны методы проектирования фильтров, пригодные для оптимизации любой из этих характеристик или их комбинаций. Действительно разумный выбор фильтра происходит не так, как описано выше; как правило, сначала задаются требуемая равномерность характеристики в полосе пропускания и необходимое затухание на некоторой частоте вне полосы пропускания и другие параметры. После этого выбирается наиболее подходящая схема с количеством полюсов, достаточным для того, чтобы удовлетворялись все эти требования. В следующих нескольких разделах будут рассмотрены три наиболее популярных типа фильтров, а именно фильтр Баттерворта (максимально плоская характеристика в полосе пропускания), фильтр Чебышева (наиболее крутой переход от полосы пропускания к полосе подавления) и фильтр Бесселя (максимально плоская характеристика времени запаздывания). Любой из этих типов фильтров можно реализовать с помощью различных схем фильтров; некоторые из них мы обсудим позже. Все они равным образом годятся для построения фильтров нижних и верхних частот и полосовых фильтров.

Фильтры Баттерворта и Чебышева. Фильтр Баттерворта обеспечивает наиболее плоскую характеристику в полосе пропускания, что достигается ценой плавности характеристики в переходной области, т. е. между полосами пропускания и задерживания. Как будет показано дальше, у него также плохая фазочастотная характеристика. Его амплитудно-частотная характеристика задается следующей формулой:

Uвых/Uвх = 1/[1 + (f/fc)2n]1/2

где n определяет порядок фильтра (число полюсов). Увеличение числа полюсов дает возможность сделать более плоским участок характеристики в полосе пропускания и увеличить крутизну спада от полосы пропускания к полосе подавления, как это показано на рис. 5.10.

Искусство схемотехники. Том 1 (Изд.4-е) - _486.jpg

Рис. 5.10. Нормированные характеристики фильтров нижних частот Баттерворта. Обратите внимание на увеличение крутизны спада характеристики с увеличением порядка фильтра.

Выбирая фильтр Баттерворта, мы ради максимально плоской характеристики поступаемся всем остальным. Его характеристика идет горизонтально, начиная от нулевой частоты, перегиб ее начинается на частоте среза fc- эта частота обычно соответствует точке —3 дБ.

В большинстве применений самым существенным обстоятельством является то, что неравномерность характеристики в полосе пропускания не должна превышать некоторой определенной величины, скажем 1 дБ. Фильтр Чебышева отвечает этому требованию, при этом допускается некоторая неравномерность характеристики во всей полосе пропускания, но при этом сильно увеличивается острота ее излома. Для фильтра Чебышева задают число полюсов и неравномерность в полосе пропускания. Допуская увеличение неравномерности в полосе пропускания, получаем более острый излом.

Амплитудно-частотная характеристика этого фильтра задается следующим соотношением:

Uвых/Uвх = 1/[1 + ε2Cn2(f/fc)]1/2

где Cn- полином Чебышева первого рода степени n, а ε — константа, определяющая неравномерность характеристики в полосе пропускания. Фильтр Чебышева, как и фильтр Баттерворта имеет фазочастотные характеристики, далекие от идеальных. На рис. 5.11 представлены для сравнения характеристики 6-полюсных фильтров нижних частот Чебышева и Баттерворта.

Искусство схемотехники. Том 1 (Изд.4-е) - _487.jpg

Рис. 5.11. Сравнение характеристик некоторых обычно применяемых 6-полюсных фильтров нижних частот. Характеристики одних и тех же фильтров изображены и в логарифмическом (вверху), и в линейном (внизу) масштабе. 1 — фильтр Бесселя; 2 — фильтр Баттерворта; 3 — фильтр Чебышева (пульсации 0,5 дБ).

Как легко заметить, и тот, и другой намного лучше 6-полюсного RC-фильтра. На самом деле фильтр Баттерворта с максимально плоской характеристикой в полосе пропускания не столь привлекателен, как это может показаться, поскольку в любом случае приходится мириться с некоторой неравномерностью в полосе пропускания (для фильтра Баттерворта это будет постепенное понижение характеристики при приближении к частоте fс, а для фильтра Чебышева — пульсации, распределенные по всей полосе пропускания).

Кроме того, активные фильтры, построенные из элементов, номиналы которых имеют некоторый допуск, будут обладать характеристикой, отличающейся от расчетной, а это значит, что в действительности на характеристике фильтра Баттерворта всегда будет иметь место некоторая неравномерность в полосе пропускания. На рис. 5.12 проиллюстрировано влияние наиболее нежелательных отклонений значений емкости конденсатора и сопротивления, резистора на характеристику фильтра.

Перейти на страницу:
Комментариев (0)
название