Фейнмановские лекции по физике. 6. Электродинамика
Фейнмановские лекции по физике. 6. Электродинамика читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
К счастью, теперь мы можем использовать нашу свободу в произвольном выборе дивергенции А. Сейчас мы собираемся сделать такой выбор, чтобы уравнения для А и для j разделились, но имели одну и ту же форму. Мы можем сделать это, выбирая
(18.23)
Когда мы поступаем так, то второе и третье слагаемые в уравнении (18.22) погашаются, и оно становится много проще:
(18.24)
И. наше уравнение (18.21) для j принимает такую же форму:
(18.25)
Какие красивые уравнения! Они великолепны прежде всего потому, что хорошо разделились — с плотностью заряда стоит j, а с током стоит А. Далее, хотя левая сторона выглядит немного нелепо — лапласиан вместе с (d/dt)2, когда мы раскроем ее, то обнаружим
(18.26)
Это уравнение имеет приятную симметрию по х, у, z, t; здесь (-1/с2) нужно, конечно, потому, что время и координаты различаются; у них разные единицы.
Уравнения Максвелла привели нас к нового типа уравнению для потенциалов j и А, но с одной и той же математической формой для всех четырех функций j, Ах, Ауи Аг. Раз мы научились решать эти уравнения, то можем получить В и Е изСXЕ и-Сj-dA/dt. Мы приходим к другой форме электромагнитных законов, в точности эквивалентной уравнениям Максвелла; с ними во многих случаях обращаться гораздо проще.
Фактически мы уже решали уравнение, весьма похожее на (18.26). Когда мы изучали звук в гл. 47 (вып. 4), мы имели уравнение в форме
и видели, что оно описывает распространение волн в x-направлении со скоростью с. Уравнение (18.26) это соответствующее волновое уравнение для трех измерений. Поэтому в области, где больше нет зарядов и токов, решение этих уравнений не означает, что j и А — нули. (Хотя на самом деле нулевое решение есть одно из возможных решений.) Имеются решения, представляющие некоторую совокупность j и А, которые меняются со временем, но всегда движутся со скоростью с. Поля передвигаются вперед через свободное пространство, как в нашем примере в начале главы.
С новым членом, добавленным Максвеллом в уравнение IV, мы смогли записать полевые уравнения в терминах А и j в форме, которая проста и сразу же позволяет выявить существование электромагнитных волн. Для многих практических целей еще будет удобно использовать первоначальные уравнения в терминах Е и В. Но они — по ту сторону горы, на которую мы уже вскарабкались. Теперь мы можем посмотреть вокруг. Все будет выглядеть иначе, — нас ожидают новые, прекрасные пейзажи.
*Это не совсем так. Поля могут быть «поглощены», если попадут в область, в которой есть заряды.
Это значит, что где-то могут быть созданы другие поля, которые наложатся на эти поля и «погасят»их в результате деструктивной интерференции (см. гл. 31, вып. 3)
* К-2— вторая по высоте вершина мира в северо-западных отрогах Гималаев, называемых Каракорум.—- Прим. ред.
*Выбор значения С·А называется «выбором калибровки». Изменение А за счет добавления Сy называется «калибровочным преобразованием». Выбор (18.23) называют «калибровкой Лоренца».
Глава 19
ПРИНЦИП НАИМЕНЬШЕГО ДЕЙСТВИЯ
Добавление, сделанное после лекции
Когда я учился в школе, наш учитель физики, по фамилии Бадер, однажды зазвал меня к себе после урока и сказал: «У тебя вид такой, как будто тебе все страшно надоело; послушай-ка об одной интересной вещи». И он рассказал мне нечто, что мне показалось поистине захватывающим. Даже сейчас, хотя с тех пор прошла уже уйма времени, это продолжает меня увлекать. И всякий раз, когда я вспоминаю о сказанном, я вновь принимаюсь за работу. И на этот раз, готовясь к лекции, я поймал себя на том, что вновь анализирую все то же самое. И, вместо того чтобы готовиться к лекции, я взялся за решение новой задачи. Предмет, о котором я говорю,— это принцип наименьшего действия.
Вот что сказал мне тогда мой учитель Бадер: «Пусть, к примеру, у тебя имеется частица в поле тяжести; эта частица, выйдя откуда-то, свободно движется куда-то в другую точку. Ты подбросил ее, скажем, кверху, а она взлетела, а потом упала.
От исходного места к конечному она прошла за какое-то время. Попробуй теперь какое-то другое движение. Пусть для того, чтобы перейти «отсюда сюда», она двигалась уже не так, как раньше, а вот так:
но все равно очутилась на нужном месте в тот же самый момент времени, что и раньше».
«И вот,— продолжал учитель,— если ты подсчитаешь кинетическую энергию в каждый момент времени на пути частицы, вычтешь из нее потенциальную энергию и проинтегрируешь разность по всему тому времени, когда происходило движение, то увидишь, что число, которое получится, будет больше, чем при истинном движении частицы.
Иными словами, законы Ньютона можно сформулировать не в виде F=ma, а вот как: средняя кинетическая энергия минус средняя потенциальная энергия достигает своего самого наименьшего значения на той траектории, по которой предмет двигается в действительности от одного места к другому.
Попробую пояснить тебе это чуть понятнее.
Если взять поле тяготения и обозначить траекторию частицы x(t), где х — высота над землей (обойдемся пока одним измерением; пусть траектория пролегает только вверх и вниз, а не в стороны), то кинетическая энергия будет 1/zm(dx/dt)2, а потенциальная энергия в произвольный момент времени будет равна mgx.
Теперь я для какого-то момента движения по траектории беру разность кинетической и потенциальной энергий и интегрирую по всему времени от начала до конца. Пусть в начальный момент времени ttдвижение началось на какой-то высоте, а кончилосъ в момент t2 на другой определенной высоте.
Тогда интеграл равен
Можно подсчитать разность потенциальной и кинетической энергий на таком пути... или на любом другом. И самое поразительное — что настоящий путь это тот, по которому этот интеграл наименьший.
Давай проверим это. Для начала разберем такой случай: у свободной частицы вовсе нет потенциальной энергии. Тогда правило говорит, что при переходе от одной точки к другой за заданное время интеграл от кинетической энергии должен оказаться наименьшим. А это значит, что частица обязана двигаться равномерно. (И это правильно, мы же с тобой знаем, что скорость в таком движении постоянна.) А почему равномерно? Разберемся в этом. Если бы было иначе, то временами скорость частицы превысила бы среднюю, а временами была бы ниже ее, а средняя скорость была бы одинаковой, потому что частице надо было бы дойти «отсюда сюда» за условленное время. Например, если тебе нужно попасть из дому в школу на своей машине за определенное время, то сделать это можно по-разному: ты можешь сперва гнать, как сумасшедший, а в конце притормозить, или ехать с одинаковой скоростью, или сначала можешь даже отправиться в обратную сторону, а уж потом повернуть к школе, и т. д. Во всех случаях средняя скорость, конечно, должна быть одной и той же — частное от деления расстояния от дома до школы на время. Но и при данной средней скорости ты иногда двигался слишком быстро, а иногда чересчур медленно. А средний квадрат чего-то, что отклоняется от среднего, как известно, всегда больше квадрата среднего; значит, интеграл от кинетической энергии при колебаниях скорости движения всегда будет больше, нежели при движении с постоянной скоростью. Ты видишь, что интеграл достигнет минимума, когда скорость будет постоянной (при отсутствии сил). Правильный путь таков.