"Шпионские штучки 2" или как сберечь свои секреты
"Шпионские штучки 2" или как сберечь свои секреты читать книгу онлайн
В настоящем справочном пособии приведены сведения об использовании тайников различных типов. В книге рассматриваются возможные варианты тайников, способы их создания и необходимые при этом инструменты, описываются приспособления и материалы для их сооружения. Даны рекомендации по устройству тайников дома, в автомобилях, на приусадебном участке и т. п.
Особое место уделено способам и методам контроля и защиты информации. Приведено описание специального промышленного оборудования, используемого при этом, а также устройств, доступных для повторения подготовленными радиолюбителями.
В книге дано подробное описание работы и рекомендации по монтажу и настройке более 50 устройств и приспособлений, необходимых при изготовлении тайников, а также предназначенных для их обнаружения и обеспечения сохранности.
Книга предназначена для широкого круга читателей, для всех, кто пожелает ознакомиться с этой специфической областью творения рук человеческих.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Индикатор СВЧ излучений
Прибор предназначен для поиска СВЧ излучении и обнаружения маломощных СВЧ-передатчиков выполненных, например, на диодах Ганна. Он перекрывает диапазон 8…12 ГГц.
Рассмотрим принцип работы индикатора. Простейшим приемником, как известно, является детекторный. И такие приемники диапазона СВЧ, состоящие из приемной антенны и диода, находят свое применение для измерения СВЧ мощности. Самым существенным недостатком является низкая чувствительность таких приемников. Чтобы резко повысить чувствительность детектора, не усложняя СВЧ головки, используется схема детекторного СВЧ приемника с модулируемой задней стенкой волновода (рис. 5.22).
Рис. 5.22. СВЧ приемник с модулируемой задней стенкой волновода
СВЧ головка при этом почти не усложнилась, добавился только модуляторный диод VD2, a VD1 остался детекторным.
С некоторым приближением можно считать, что когда диод VD2 закрыт, он не влияет на процессы в волноводе, а когда открыт — полностью закорачивает волновод, т. е. играет роль короткозамкнутой задней стенки.
Рассмотрим процесс детектирования. СВЧ сигнал, принятый рупорной (или любой другой, в нашем случае — диэлектрической) антенной, поступает в волновод. Поскольку задняя стенка волновода короткозамкнута, в волноводе устанавливается режим стоячих воли. Причем, если детекторный диод будет находиться на расстоянии полуволны от задней стенки, он будет в узле (т. е. минимуме) поля, а если на расстоянии четверти волны — то в пучности (максимуме). То есть, если мы будем электрически передвигать заднюю стенку волновода на четверть волны (подавая модулирующее напряжение с частотой 3 кГц на VD2), то на VD1, вследствие перемещения его с частотой 3 кГц из узла в пучность СВЧ поля, выделится НЧ сигнал с частотой 3 кГц, который может быть усилен и выделен обычным усилителем НЧ.
Таким образом, если на VD2 подать прямоугольное модулирующее напряжение, то при попадании в СВЧ поле с VD1 будет снят продетектированный сигнал той же частоты. Этот сигнал будет противофазен модулирующему (это свойство с успехом будет использовано в дальнейшем для выделения полезного сигнала из наводок) и иметь очень малую амплитуду.
То есть вся обработка сигнала будет производиться на НЧ, без дефицитных СВЧ деталей.
Схема обработки приведена на рис. 5.23. Питается схема от источника 12 В и потребляет ток около 10 мА.
Рис. 5.23. Схема обработки СВЧ сигнала
Резистор R3 обеспечивает начальное смещение детекторного диода VD1.
Принятый диодом VD1 сигнал усиливается трехкаскадным усилителем на транзисторах VT1 — VT3. Для исключения помех питание входных цепей осуществляется через стабилизатор напряжения на транзисторе VT4.
На микросхеме DD2 собран генератор импульсов частотой 3 кГц, которыми через резистор R22 модулируется диод VD2. Модулирующее напряжение в прямой (вывод 8 DD2) и инверсной (вывод 9 DD2) фазах через R8 поступает на резистор R11 «Чувствительность». Этим резистором устанавливается такая фаза и амплитуда компенсирующего напряжения на движке R11, чтобы свести к нулю наводки на диод VD1. В самом деле, на VD1 так или иначе будет наведено (через паразитные связи) модулирующее напряжение 3 кГц (все-таки на VD2 почти 1 В, а полный сигнал снимается с VD1 и имеет амплитуду 1 мкВ и менее).
Но вспомним, что полезный сигнал (от СВЧ поля) с диода VD1 и модулирующее напряжение на диоде VD2 противофазны. Именно поэтому движок R11 можно установить в такое положение, при котором наводки будут подавлены.
Подключите осциллограф к выходу ОУ DA2 и, вращая ползунок резистора R11, вы увидите, как происходит компенсация.
С выхода предварительного усилителя VT1—VT3 сигнал поступает на выходной усилитель на микросхеме DA2. Обратите внимание на то, что между коллектором VT3 и входом DA2 стоит RC-пспочка R17C3 (или С4 в зависимости от состояния ключей DD1) с полосой пропускания всего 20 Гц(!). Это так называемый цифровой корреляционный фильтр. Мы знаем, что должны принять прямоугольный сигнал частотой 3 кГц, в точности равной модулирующей, и в противофазе с модулирующим сигналом. Цифровой фильтр как раз и использует это знание — когда должен приниматься высокий уровень полезного сигнала, подключается конденсатор СЗ, а когда низкий — С4. Таким образом, на СЗ и С4 за несколько периодов накапливаются верхнее и нижнее значения полезного сигнала, в то время как шумы со случайной фазой отфильтровываются. Цифровой фильтр улучшает соотношение сигнал/шум в несколько раз, соответственно повышая и общую чувствительность детектора. Становится возможным уверенно обнаруживать сигналы, лежащие ниже уровня шума (это общее свойство корреляционного приема).
С выхода DA2 сигнал через еще один цифровой фильтр R5C6 (или С8 в зависимости от состояния ключей DD1) поступает на интегратор-компаратор DA1, напряжение на выходе которого при наличии полезного сигнала на входе (VD1) становится равным примерно напряжению питания. Этим сигналом включается светодиод HL2 «Тревога» и головка ВА1. Прерывистое тональное звучание головки ВА1 и мигание светодиода HL2 обеспечивается работой двух мультивибраторов с частотами около 1 и 2 кГц, выполненными на микросхеме DD2, и транзистором VT5, шунтирующим базу VT6 с частотой работы мультивибраторов.
Конструктивно прибор состоит из СВЧ головки и платы обработки, которая может быть размещена как рядом с головкой, так и отдельно.
Ежедневно, говоря по телефону, вы даже не задумываетесь о том, что вас могут подслушивать. В результате содержание самых важных разговоров (деловая, стратегически ценная, компрометирующая информация) становится известным именно тем людям, которые не должны ничего о них знать. Как только ваши телефонные переговоры заинтересуют кого-либо, находится простое решение — подслушать их. Каждый раз, когда вы поднимаете трубку телефона у себя дома или в офисе, на телефонной линии включаются специальные радиопередатчики или диктофоны; для того, чтобы прослушать ваш разговор, достаточно просто подключить к ней параллельный аппарат или телефонную трубку.
Существуют различные системы для предотвращения несанкционированного прослушивания телефонных переговоров, факсов и модемной связи. Принцип действия таких систем заключается в том, что они подавляют нормальную работу телефонных закладок всех типов (последовательных и параллельных) и диктофонов, установленных на вашей телефонной линии от места установки до АТС. Результатом работы устройств является «размывание спектра» излучения телефонной закладки, что делает невозможным прием информации от нее, а также «забивание» системы АРУ звука и выведение из строя системы VOX (система автоматического включения при наличии на линейном входе сигнала определенного уровня) диктофонов, подключенных к линии.
В результате становится крайне затруднительно перехватить ваши телефонные разговоры обычными средствами прослушивания как зарубежного, так и отечественного производства.
Система безопасности телефонной линии «Барьер» (рис. 5.24) разработана специально для того, чтобы исключить любую возможность подслушивания ваших телефонных переговоров.
Рис. 5.24. Система безопасности телефонной линии «Барьер»
«Барьер» включается между телефонным аппаратом и линией (телефонной розеткой) и автоматически обеспечивает максимальную защиту от подслушивающих и записывающих устройств любого типа.