Жизнеобеспечение экипажей летательных аппаратов после вынужденного приземления или приводнения (без
Жизнеобеспечение экипажей летательных аппаратов после вынужденного приземления или приводнения (без читать книгу онлайн
Книга посвящена актуальной проблеме выживания человека, оказавшегося в результате аварии самолета, корабля или других обстоятельств в условиях автономного существования в безлюдной местности или в океане.
Давая описание различных физико-географических зон земного шара, автор анализирует особенности неблагоприятного воздействия факторов внешней среды на организм человека и существующие методы защиты и профилактики.
В книге широко использованы материалы отечественных и зарубежных исследователей, а также материалы, полученные автором во время экспедиций в Арктику, пустыни Средней Азии, в тропическую зону Атлантического, Индийского и Тихого океанов.
Издание рассчитано на широкий круг читателей: врачей, биологов, летчиков, моряков, геологов.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
И снова взоры моряков и ученых обратились к морской воде. Если ее нельзя пить такой, какая она есть, то надо избавиться от того, что делает ее опасной, – от солей. Например, соорудить перегонный куб и гнать опресненную дистиллированную воду, используя солнечное тепло. Стоило родиться идее, и, как грибы после дождя, появилось целое семейство разнообразных «перегонных устройств для терпящих бедствие».
Уже во время второй мировой войны стали выпускаться дистилляторы в виде цилиндров, выстланных изнутри слоем черной губки, которую пропитывали морской водой. Вода нагревалась солнцем, и охлажденный пар стекал в водосборник. Такие устройства давали до 700 мл воды в сутки (Fetcher, 1945).
Один из наиболее распространенных дистилляторов был сконструирован в виде шара из прозрачного пластика, напоминавшего большой детский мяч. Внутри его находился второй «мяч», несколько меньших размеров, сделанный из черного материала. Дистиллятор надо было заполнить морской водой, надуть воздухом и, привязав к лодке, пустить гулять по волнам. Солнце нагревало воду, пар проходил по системе трубок и, оседая на стенках, каплями пресной воды сбегал в пластиковый резервуар. Однако прибор этот страдал одним весьма существенным недостатком: в пасмурный день и в ночное время он бездействовал.
Остроумный выход из положения нашли конструкторы английской фирмы «Дэнлоп», специализирующейся на изготовлении спасательного снаряжения. Их дистиллятор, выполненный в виде сферы из прозрачного материала, имел в нижней части специальную чашу, обрамленную тепловым экраном из черной пленки. Когда дистиллятор опускали за борт, между верхней его частью, обдуваемой воздухом, и нижней, находящейся в воде, создавалась разность температур. Вода в чаше начинала испаряться и, конденсируясь на внутренней поверхности верхней полусферы, по гидрофобному (водоотталкивающему) пластику стекала в водосборник, из которого ее можно было отсасывать через специальную трубку. Новый дистиллятор мог действовать в любую погоду, днем и ночью и давать до 1,5 л воды в сутки.
Оригинальная конструкция опреснителя была предложена американскими инженерами. Они вмонтировали в спасательный пробковый жилет рамки-окна, на которые были последовательно натянуты черная пластмассовая фольга, толстая гофрированная бумага, водонепроницаемый, но пропускающий пары воды материал, алюминизированная пленка и, наконец, слой ткани. Этот своеобразный конвертер надо периодически опускать в океан, а затем просушивать. В результате за 16 час. в пространстве между алюминизированной пленкой и паронепроницаемой тканью скапливается до полулитра пресной воды (Hackenberg, 1967).
Химики предложили другой путь получения пресной воды из морской. Они использовали природные минеральные вещества – цеолиты, обладающие способностью связывать катионы натрия, калия, кальция, магния – положительно заряженные молекулы растворенных в воде солей, переводя их в нерастворимый осадок. А чтобы избавиться от молекул хлора, к цеолитам добавляли препараты серебра. Достаточно было заполнить морской водой специальный реактивный мешочек, добавить к ней размельченный препарат, чтобы через 10-15 мин. получить добрую порцию пресной воды. Еще большей способностью к ионному обмену обладают искусственные высокомолекулярные соединения – ионообменные смолы.
Сегодня такими опресняющими брикетами снабжены аварийные укладки летчиков и моряков во всем мире. С помощью одного комплекта брикетов можно опреснить до 3,5 л морской или 1,5 л океанской воды.
Простота использования и быстрота действия снискали химическим опреснителям всеобщую популярность.
Как же должен себя вести экипаж, оказавшийся на спасательной лодке или плоту в тропической зоне океана?
Не пить первые 24 часа. Экономить пресную воду, помня, что 500-600 мл воды в сутки – рацион, которого хватит на пять-шесть дней без особых последствий для организма. Не пить первые сутки после аварии, создать любую, самую примитивную теневую защиту от солнечных лучей. Смачивать в жаркое время суток одежду забортной водой, помогая организму сохранить внутренние резервы жидкости, но не забывая высушить ее до захода солнца. Ограничить до минимума физическую работу в жаркие дневные часы. Никогда, ни при каких обстоятельствах не пить морскую воду.
Выживание в холодной воде
В апреле 1912 г. гигантский лайнер «Титаник», следовавший из Ливерпуля в Нью-Йорк, столкнулся в Атлантическом океане с айсбергом и затонул.
Спасательные суда прибыли на место катастрофы через 1 час 50 мин., но ни одного из 1 489 пассажиров, оказавшихся в воде, уже не было в живых (Mersey, 1912).
Из 720 погибших во время авиационных катастроф американских рейсовых самолетов за 10 лет, с 1954 по 1964 г., 71 стал жертвой холодной воды (Doyle, Roeple, 1965).
Во время второй мировой войны 42% немецких летчиков, сбитых над арктическим водным бассейном, погибало от переохлаждения за 25-30 мин. (Matthes, 1950).
Известно, что даже в тропических водах, где температура относительно высока, время пребывания человека ограничено: рано или поздно температура тела достигает нижнего критического предела, и развиваются нарушения многих физиологических функций (Клинцевич, 1970).
Уже при температуре воды 24° время выживания измеряется лишь несколькими часами (8±1 час.) (Carlson et al., 1953). При температуре 5-15° оно уменьшается вдвое (Reevs, 1956). Температура 3° оказывается смертельной для человека в течение 10-15 мин. (Arends, 1972), а -2° – 8 мин. (Демпвулф, 1959; Weis, 1974).
По данным различных авторов, сроки выживания могут варьировать в ту или иную сторону. Так, R. McCance и др. (1956), изучавшие аварийность английских судов во время второй мировой войны, пришли к заключению, что в случаях, когда катастрофа произошла в районах, где температура воды составляла -1,1-+9°, матросы и пассажиры гибли за 5-20 мин. F. Grosse-Brochoft (1950), P. Whittingham (1965), Е. Ferrugia (1968) и другие ограничивают время выживания в воде с температурой 0-10° 20-40 мин. Более того, почти 17% людей, добравшихся до спасательных лодок, умирало в течение 8-12 час. от переохлаждения (Pittman et al., 1969).
Основной причиной гибели людей в воде является переохлаждение. При температуре воды ниже 30° вырабатываемого организмом тепла становится недостаточным, чтобы восполнить теплопотери, и температура тела (ректальная температура) постепенно начинает опускаться, и тем быстрее, чем ниже температура окружающей среды (Molnar, 1946). При ректальной температуре 32-34° у человека появляются общая слабость, нарушение походки, замедление речи. Снижение температуры до 23-24° сопровождается снижением болевой, тактильной чувствительности и рефлекторной возбудимости. Дальнейшее падение ее до 20-17° вызывает в организме необратимые изменения, зачастую ведущие к смерти (Глеккель, Кравчинский, 1935; Арьев, 1950; Избинский, 1965; Veghte, 1962). Помимо температуры воды скорость процесса охлаждения зависит от различных причин: физического состояния человека, одежды, толщины подкожно-жирового слоя (Carlson et al., 1958; Tiep, 1969). Последнему обстоятельству некоторые физиологи придают особенно большое значение (Speallmen, 1945; Beckman, Reeves, 1966). Cannon, Keating (1960) установили линейную зависимость между падением температуры тела и толщиной подкожно-жировой клетчатки.
Однако смерть человека, оказавшегося в холодной воде, иногда настигает гораздо раньше, чем наступило переохлаждение. Причиной ее может быть своеобразный «холодовой шок», развивающийся иногда в первые 5-15 мин. после погружения в воду (Beckman, Reeves, 1966), или нарушение функции дыхания, вызванного массивным раздражением холодовых рецепторов кожи (Crismon, Filliot, 1947; Keating et al., 1969). Крайне осложняет спасение человека в холодной воде быстрая потеря тактильной чувствительности. Находясь рядом со спасательной лодкой, терпящий бедствие не может самостоятельно забраться на нее, так как температура кожи пальцев падает до температуры окружающей воды (Greenfield et al., 1951; Hsien et al., 1964; Fox, 1967).