Информация как основа жизни
Информация как основа жизни читать книгу онлайн
КОРОГОДИН В. И., КОРОГОДИНА В. Л.
ИНФОРМАЦИЯ КАК ОСНОВА ЖИЗНИ
© Авторы. В. И. Корогодин и В. Л. Корогодина, 2000 г. © Оформление. ИЦ "Феникс", 2000 г.
Книга посвящена феномену жизни и информации как внутренне присущему свойству информационных систем.
Рассматриваются свойства информации и информационных систем. Выделяются главные свойства информационных систем – способность к "целенаправленным" действиям и расслоение на информационную" и "динамическую" подсистемы.
Рассматривается динамика информации от ранних этапов эволюции физических информационных систем до систем с биологической информацией – генетической, поведенческой и логической. Особое внимание уделяется динамике биологической информации в биосфере. Одной из проблем, затрагиваемой авторами, является взаимодействие ноосферы и техносферы, связанной с автогенезом информации.
Книга рассчитана на специалистов, а также на круг читателей, интересующихся теорией информации, эволюцией, биологией и взаимоотношениями биосферы и техносферы.
KOROGODIN V. I. & KOROGODINA V. L.
Information as the Foundation of Life. – Dubna: "Phoenix" Publishing Center, 2000. – 208 p.
The book analyzes the phenomenon of life and information as an inherent quality of information systems.
Properties of information and information systems are discussed. The main properties of information systems are pointed out: the ability to act "purposefully" and the division into an "informative" and "dynamic" subsystems.
The dynamics of information is analyzed, from the early stages of physical information system evolution to the systems with biological genetic, be-haviouristic and logical information. Special attention is attached to the dynamics of biological information in biosphere. One of the problems, connected with information autogenesis and discussed by the authors, is the interaction of noosphere and technosphere with biosphere.
The book is recommended to specialists and readers who are interested in the theory of information, evolution, biology and interaction of biosphere and technosphere.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
В терминах информационных полей сказанное выше будет выражаться в том, что с увеличением размерности экологических ниш должно возрастать количество информации, способной обладать максимальной эффективностью в том или ином информационном поле, этим нишам соответствующем. Количество такой оптимальной информации для обитателей все более высоких ярусов жизни может только возрастать.
Последнее высказывание можно сформулировать и по-другому. Действительно, можно утверждать, что с увеличением количества информации размерность пространства режимов, обеспечивающего ее успешную редупликацию, должна возрастать. Попробуем обосновать это утверждение на мысленном примере динамики информации, попадающей в разные информационные поля.
Динамика информации в разных информационных полях: конвергенция и дивергенция, деградация, идиоадаптация и араморфозы
Пусть дано некоторое информационное поле 1 с оптимальным количеством информации В1. Пусть разные точки этого информационного поля заняты информационными системами, кодируемыми информацией с разными значениями В. Пусть эти информационные системы могут размножаться в данном информационном поле со скоростями, пропорциональными А, и в ходе размножения изменяться благодаря изменчивости кодирующей их информации. Такая изменчивость может затрагивать как количество информации В, так и ее семантику, сказываясь во втором случае на ценности С этой информации в данном информационном поле. Введем еще две характеристики информационных систем – скорость их размножения VP, которая может быть выше, а может быть и ниже скорости их гибели Vr.
Нетрудно показать, что с течением времени, при прочих равных условиях, характер заселенности разных участков информационного поля будет изменяться (рис. 4). Хотя изменчивость информационных систем не направлена и, в силу своей случайности, может приводить к их попаданию в любую точку информационного поля, те из них, у которых величина В больше или меньше, чем Вopt, согласно соотношению VP/Vr – окажутся обреченными на прозябание или гибель, а основная масса обитателей информационного поля будет все более с течением времени, сосредоточиваться в зоне его экстремума (где В ≈ Ворt), приближаясь к максимальному значению величины А1=А1max. Налицо конвергентная эволюция информационных систем – их эволюция в направлении оптимального количества информации Bopt и единой семантики, обеспечивающей приближение значений С к величине С1=А1В1.
Рис. 4. Схема миграции информации по информационным полям разных размерностей. Пояснения в тексте.
Допустим теперь, что информационные системы, блуждающие в информационном поле 1, могут выходить за его пределы и попадать в соседние информационные поля типа 2 (с В2 ≈B1), и типа 3 (с В3 < B1) и типа 4 (с В4 > B1). Во всех этих трех ситуациях дальнейшая трансформация их будет подчиняться тем же закономерностям, что и в рассмотренном выше случае (критерием значимости везде остается А), но результаты этих трансформаций окажутся различными. В случаях 2 в каждом из таких информационных полей будут формироваться системы, кодируемые информацией с близкими значениями В, но различающиеся по семантике; в случаях 3 также будет складываться целое семейство информационных систем с различной семантикой, но близкими значениями В3 < В1:2. В случаях 4 характеристическое значение количества информации для таких семейств будет В4 > В1:2 > В3 (см. рис. 4).
Рассмотренные ситуации могут служить примерами разных вариантов дивергентной эволюции информационных систем. Но результаты дивергенции во всех трех случаях будут принципиально различаться. В случаях 1 и 2 налицо идиоадаптивный характер дивергенции: оставаясь на одном и том же ярусе жизни (или, что то же самое, на одном и том же уровне организации, о чем свидетельствуют близкие значения В1 ≈ В2), информационные системы просто "расползаются" по ближайшим экологическим нишам одного и того же яруса, постепенно ими овладевая. В случае 3 динамика информации хотя и носит дивергентный характер, но приводит к уменьшению характеристических значений В, что свидетельствует об упрощении организации соответствующих информационных систем, связанном с переходом к существованию в экологических нишах меньших размеров и, следовательно, занимающих более низкие ярусы древа жизни. Наконец в случаях 4 результатом динамики информации будет увеличение характеристических значений В по сравнению с исходными, что свидетельствует о повышении уровня организации информационных систем, и необходимо им для успешного освоения экологических ниш большей размерности, занимающих более высокое положение в жизненной иерархии по сравнению с предыдущими ситуациями.
Таким образом, адаптивный характер изменчивости генетической информации, осуществляющейся в одном и том же информационном поле (или в одной и той же экологической нише), всегда имеет конвергентный характер, направленный в сторону увеличения ее эффективности А, что может сопровождаться как уменьшением, так и увеличением ее количества, – в обоих случаях в сторону В. Идио-адаптивная изменчивость может происходить только в разных информационных полях, соответствующих экологическим нишам близких размерностей, размещенных на одном и том же ярусе жизни. В этом случае сближение значений В будет сопровождаться все возрастающим семантическим разнообразием эволюционирующей информации. Деградационный, или регрессивный, тип эволюция информации приобретает тогда, когда кодируемые ею информационные системы должны адаптироваться к экологическим нишам меньшей, чем исходная, размерности и когда повышение эффективности информации А неизбежно сопровождается уменьшением ее количества В. Наконец, характер динамики информации, связанной с увеличением как А, так и В, обусловливаемый необходимостью адаптироваться к экологическим нишам большей, чем исходная, размерности, можно называть прогрессивной эволюцией.
Заметим, что в основе всех трех вариантов динамики информации, связанных с ее попаданием в новые экологические ниши и их последующим освоением, лежит присущее любой информации свойство полипотентности. Принцип поризма срабатывает там, где, благодаря изменчивости информации, возникают ее варианты, как благоприятствующие заселению ею данной экологической ниши, так и создающие возможность освоения экологических ниш большей размерности, т. е. подъема на более высокие ярусы жизни. Араморфозы, представляющие собой результат реализации поризмов на уровне операторов, могут сохраняться на протяжении ряда переходов информационных систем на все более высокие ярусы жизни (см., напр., [12].)
Таким образом, монотонное повышение эффективности информации (до определенного предела) характерно для адаптивного типа ее динамики. Для других типов динамики, а именно, идиоадаптивного, регрессивного и прогрессивного, характерна циклическая изменчивость значения А, когда уменьшение А, часто сопутствующее переходу информации из одного информационного поля в другие, сменяется его повышением, затем – опять снижением и т. д.[5] При этом идиоадаптивный тип динамики сопровождается колебаниями величины В около некоторого постоянного значения, регрессивный – уменьшением величины В, а прогрессивный, напротив, увеличением В.