Большая Советская Энциклопедия (ФЕ)
Большая Советская Энциклопедия (ФЕ) читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Необходимым условием существования Ф. является наличие в веществе положительных ионов (катионов) элементов с незаполненной (d- или f -) электронной оболочкой, обладающих собственным магнитным моментом. Между ионами различных подрешёток должно существовать отрицательное обменное взаимодействие , стремящееся установить их магнитные моменты антипараллельно. Как правило, это взаимодействие является косвенным обменным взаимодействием, т. е. осуществляется путём обмена электронами через промежуточный немагнитный анион (например, ион кислорода, рис. 2 ).
При высоких температурах, когда энергия теплового движения много больше обменной энергии, вещество обладает парамагнитными свойствами (см. Парамагнетизм ). Температурная зависимость магнитной восприимчивости парамагнетиков, в которых при низких температурах возникает Ф., обладает характерными особенностями, показанными на рис. 3 . Обратная восприимчивость (1/c) таких веществ следует Кюри – Вейса закону с отрицательной константой Q = D при высоких температурах, а при понижении температуры круто спадает, стремясь к нулю при Т ® Qс . В Кюри точке Qс, когда энергия обменного взаимодействия становится равной энергии теплового движения в веществе, возникает ферримагнитная упорядоченность. В большинстве случаев переход в упорядоченное состояние является фазовым переходом 2-го рода и сопровождается характерными аномалиями теплоёмкости, линейного расширения, гальваномагнитных и др. свойств.
Возникающая ферримагнитная упорядоченность моментов описывается определённой магнитной структурой , т. е. разбиением кристалла на магнитные подрешётки, величиной и направлением векторов их намагниченностей. Магнитная структура может быть определена методами дифракции нейтронов (см. Дифракция частиц ). Образование той или иной магнитной структуры зависит от кристаллической структуры вещества и соотношения величин обменных взаимодействий между различными магнитными ионами. Обменное взаимодействие определяет только взаимную ориентацию намагниченностей подрешёток друг относительно друга. Другой их параметр – ориентация относительно осей кристалла – определяется энергией магнитной анизотропии , которая на несколько порядков меньше обменной энергии.
Существование в ферримагнетике нескольких различных подрешёток приводит к более сложной температурной зависимости спонтанной намагниченности J, чем в обычном ферромагнетике. Это связано с тем, что температурные зависимости намагниченности каждой из подрешёток могут отличаться друг от друга (рис. 4 ). В результате спонтанная намагниченность, являющаяся в простейшем случае разностью намагниченностей подрешёток, с ростом температуры от абсолютного нуля может: 1) убывать монотонно (рис. 4 , а), как в обычном ферромагнетике; 2) возрастать при низких температурах и в дальнейшем проходить через максимум (рис. 4 , б); 3) обращаться в нуль при некоторой фиксированной температуре Qк . температуру Qк называют точкой компенсации, при Т > Qк или Т < Qк спонтанная намагниченность отлична от нуля.
Впервые теоретическое описание свойств ферримагнетиков было дано Неелем (1948), который показал, что основные особенности поведения ферримагнетиков могут быть очень хорошо объяснены в рамках теории молекулярного поля. Ферримагнетики в не очень сильных магнитных полях (много меньше обменных) ведут себя так же, как ферромагнетики , т.к. такие магнитные поля не изменяют магнитной структуры. В отсутствии поля они разбиваются на домены , имеют характерную кривую намагничивания с насыщением и гистерезисом . В них наблюдается магнитострикция . В ферримагнетиках с неколлинеарными магнитными структурами при доступных значениях магнитного поля насыщения обычно не наблюдается. Особыми магнитными свойствами ферримагнетики обладают вблизи точки компенсации. Здесь даже слабые магнитные поля вызывают взаимный скос и опрокидывание подрешёток. Вдали от точки компенсации такие изменения магнитной структуры происходят в сильных (порядка обменных) магнитных полях. При определенных условиях в ферримагнетиках наблюдается резонансное поглощение электромагнитной энергии (ферримагнитный резонанс ). Изучение Ф. развивалось очень бурно и далеко продвинуло физику магнитных явлений. Удалось создать теорию ферримагнетиков-диэлектриков (большинство ферримагнетиков является диэлектриками); многие магнитные диэлектрики стали широко применяться в радиотехнике, СВЧ-технике, вычислительной технике.
Лит.: Смит Я., Вейн Х., Ферриты, пер. с англ., М., 1962; Редкоземельные ферромагнетики и антиферромагнетцки, М., 1965; Гуревич А. Г., Магнитный резонанс в ферритах и антиферромагнетиках, М., 1973; Смоленский Г. А., Леманов В, В., Ферриты и их техническое применение, Л., 1975; см. также лит. при статьях Антиферромагнетизм , Ферромагнетизм .
А. С. Боровик-Романов.
Рис. 4. Различные типы температурной зависимости намагниченности подрешёток M1 и M2 и спонтанной намагниченности J для ферримагнетика с двумя магнитными подрешётками.
Рис. 1. Схематическое изображение ферримагнитного упорядочения линейной цепочки магнитных ионов разных сортов с элементарными магнитными моментами m1 и m2 . М1 =Nm1 и М2 = Nm2 — намагниченности 1-й и 2-й подрешёток (N — число ионов данного сорта в единице объёма). Суммарная намагниченность J = М1 — М2 .
Рис. 3. Температурная зависимость обратной магнитной восприимчивости 1/c: 1 — парамагнетика с c = С/Т; 2 — ферромагнетика с c = С/(Т — Q); 3 — антиферромагнетика с c = С/(Т + Q); 4 — ферримагнетика.
Рис. 2. Типичное расположение ионов в ферримагнитном кристалле: С — немагнитный анион; А, B' и В" — магнитные катионы 1-й и 2-й подрешёток. Основное косвенное взаимодействие между А и B', В" — отрицательно. Взаимодействие B' — В" — мало.
Ферримагнетики
Ферримагне'тики, вещества, в которых при температурах ниже Кюри точки существует ферримагнитное упорядочение магнитных моментов ионов (см. Ферримагнетизм ). Большинство Ф. – это ионные кристаллы, содержащие магнитные ионы различных элементов или одного элемента, но либо имеющие разную валентность, либо находящиеся в разных кристаллографических позициях. Наиболее обширный класс хорошо изученных Ф. образуют ферриты . Из других ферримагнитных кристаллов следует отметить группу гексагональных двойных фторидов (RbNiF3 , CsNiF3 , TlNiF3 , CsFeF3 ), особенно интересных тем, что они являются прозрачными в оптической области. К Ф. принадлежит также ряд сплавов и интерметаллических соединений. В большинстве случаев это – вещества, содержащие атомы редкоземельных элементов. В частности, особый интерес представляет соединение типа RMe5 , где R – редкоземельный ион, Me – ион группы железа (например, GdCo5 ; см. Магнит постоянный ).
Ф. применяются в качестве сердечников высокочастотных контуров в радиотехнике, невзаимных элементов в СВЧ-технике, элементов памяти в ЭВМ и для создания постоянных магнитов.
Лит. см. при статьях ферримагнетизм , Ферриты .