Большая Советская Энциклопедия (ЭЛ)
Большая Советская Энциклопедия (ЭЛ) читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Парамагнитная релаксация. Ширина линий. Релаксационные процессы, восстанавливающие равновесие в системе электронных спинов, нарушенное в результате поглощения электромагнитной энергии, характеризуются временами релаксации T1 и T2. Ширина линий поглощения Dv связана с временами релаксации соотношением:
Dn = (1/ T1 ) + (1/ T2 ). (4)
В классическом рассмотрении времена T1 и T2 называются продольным и поперечным временами релаксации, т. к. они определяют время восстановления равновесного положения продольной и поперечной компонент вектора намагниченности . Т. к. восстановление равновесной величины поперечной компоненты намагниченности происходит благодаря взаимодействию между магнитными моментами парамагнитных частиц (спин-спиновое взаимодействие ), то T1 называется также временем спин-спиновой релаксации. Восстановление продольной компоненты обусловлено взаимодействием магнитных моментов парамагнитных частиц с колебаниями кристаллической решётки (спин-решёточное взаимодействие). Поэтому время T1 называется также временем спин-решёточной релаксации. Оно характеризует скорость восстановления равновесия между спиновой системой и колебаниями решетки.
Спин-спиновое взаимодействие состоит из двух составляющих: диполь-дипольного и обменного взаимодействий . Локальное поле, действующее на парамагнитную частицу, складывается из внешнего поля Н и поля НД, создаваемого диполями (магнитными моментами) соседних парамагнитных частиц. Поле НД изменяется от точки к точке, т. к. изменяется набор соседних парамагнитных частиц и направление их магнитных моментов, что приводит к уширению линии ЭПР. Обменное взаимодействие, наоборот, стремится упорядочить направления спинов и, следовательно, уменьшает «хаотичность» ориентаций магнитных моментов парамагнитных частиц. Поэтому оно приводит к «обменному сужению» линии ЭПР.
Движения ядер парамагнитных центров создают флуктуации электрического поля, влияющие на орбитальное движение электронов, что, в свою очередь, приводит к появлению флуктуаций локального магнитного поля, а следовательно, и к уширению линий ЭПР. Величина спин-решёточного взаимодействия уменьшается при понижении температуры, т. к. уменьшается амплитуда тепловых колебаний решётки ядер. Величина спин-спинового взаимодействия от температуры практически не зависит. Поэтому для ионов переходных металлов с большим вкладом орбитального момента линию ЭПР удаётся наблюдать только при низких температурах. Спектры ЭПР наблюдают при достаточно малой мощности переменного электромагнитного поля (10-2 —10-3вт ), когда установившееся состояние мало отличается от равновесного. Если мощность велика и релаксационные процессы не в состоянии восстановить равновесное распределение, то населённости уровней выравниваются и наступает насыщение, обнаруживаемое по уменьшению поглощения (см. Квантовая электроника ). Эффект насыщения уровней используется для измерения времён парамагнитной релаксации.
Экспериментальные методы. ЭПР наблюдается в диапазоне СВЧ. Интенсивность поглощения энергии увеличивается с ростом частоты, т. к. в соответствии с (3) при этом увеличивается различие в населённости уровней. Достаточно высокая чувствительность метода достигается на частоте v = 9000 Мгц. Это соответствует Н = 3200 э (величина магнитного поля, легко получаемая в лабораторных условиях). Использование мощных электромагнитов и сверхпроводящих соленоидов позволяет работать на частотах вплоть до n= 150000 Мгц (длина волны l = 2 мм ).
Для измерения поглощения используют радиоспектрометры (спектрометры ЭПР), в которых при постоянной частоте и медленном изменении внешнего магнитного поля регистрируется изменение поглощаемой в образце мощности. В спектрометрах ЭПР прямого усиления высокочастотные колебания от клистрона по волноводному тракту подаются в объёмный резонатор (полость размером ~ l), помещенный между полюсами электромагнита. Прошедшие через резонатор или отражённые от него электромагнитные волны попадают на кристаллический детектор. Изменение поглощаемой в образце мощности регистрируется по изменению тока детектора. Для повышения чувствительности спектрометра внешнее магнитное поле модулируют с частотой 30 гц — 1 Мгц. При наличии в образце поглощения прошедшие или отражённые от резонатора СВЧ-волны также оказываются промодулированными. Промодулированный сигнал усиливается, детектируется и подаётся на регистрирующее устройство (осциллограф или самописец). При этом записываемый сигнал имеет форму производной от кривой поглощения (рис. 4 ). Чувствительность спектрометра ЭПР определяется уровнем тепловых шумов усилителя. В супергетеродинных спектрометрах на детектор подаётся мощность от дополнительного клистрона. Частота колебаний, генерируемых этим клистроном, отличается от частоты сигнального клистрона. Сигнал с детектора усиливается на разностной частоте 30—100 Мгц.
Применение метода ЭПР. Наиболее хорошо изучены спектры ЭПР ионов переходных металлов. Для того чтобы устранить уширение линии, обусловленное дипольным взаимодействием с соседними парамагнитными ионами, измерения проводят на монокристаллах, являющихся диамагнитными диэлектриками, куда в качестве примесей (0,001%—0,1%) вводят парамагнитные ионы. Влияние окружающих ионов на парамагнитный ион рассматривают как действие точечных электрических зарядов. ЭПР наблюдают на заселённых нижних энергетических уровнях парамагнитного иона, получающихся в результате расщепления основного уровня электрическим полем окружающих зарядов (см. Кристаллическое поле ). В случае ионов редкоземельных элементов кристаллическое поле оказывается слабым по сравнению с взаимодействием электронов иона, т. к. парамагнетизм этих ионов обусловлен глубоко лежащими 4 f -электронами. Момент количества движения иона определяется суммой орбитального и спинового моментов основного уровня. В кристаллическом поле уровни с разной абсолютной величиной проекции полного магнитного момента не эквивалентны по энергии. Для ионов группы Fe, парамагнетизм которых обусловлен 3 d-электронами, кристаллическое поле оказывается сильнее спин-орбитального взаимодействия, определяющего энергетический спектр свободного иона. В результате максимальная величина проекции орбитального момента либо уменьшается, либо становится равной нулю. Принято говорить, что происходит частичное или полное «замораживание» орбитального момента.
Симметрия кристаллического поля определяет симметрию g -фактора, а напряжённость кристаллического поля определяет его величину. Поэтому изучение g -фактора парамагнитных ионов позволяет исследовать кристаллические поля. По спектрам ЭПР можно определить также заряд парамагнитного иона, симметрию окружающих его ионов, что в сочетании с данными рентгеновского структурного анализа даёт возможность определить расположение парамагнитного иона в кристаллической решётке. Знание энергетических уровней парамагнитного иона позволяет сравнивать результаты ЭПР с данными оптических спектров и вычислять магнитные восприимчивости парамагнетиков.
Метод ЭПР широко применяется в химии. В процессе химических реакций или под действием ионизирующих излучений могут образовываться молекулы, у которых хотя бы один электрон не спарен (незаполненная химическая связь). Эти молекулы, называются свободными радикалами, относительно устойчивы и обладают повышенной химической активностью. Их роль в кинетике химических реакций велика, а метод ЭПР — один из важнейших методов их исследования; g -фактор свободных радикалов обычно близок к значению gS, а ширина линии мала. Из-за этих качеств один из наиболее устойчивых свободных радикалов (a-дифинил-b -пикрилгидразил), у которого g = 2,0036, используется как стандарт при измерениях ЭПР.