Большая Советская Энциклопедия (МУ)
Большая Советская Энциклопедия (МУ) читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Экспериментальные исследования спонтанных и индуцированных М. (наиболее изучены М. у кукурузы, дрозофилы, а также ряда микроорганизмов) вскрыли ряд важных особенностей мутирования генов. Частота возникновения спонтанных М. неодинакова для разных генов и различных организмов, составляя для отдельного гена от 1:105 до 1:107 в поколение; немногие, так называемые мутабильные, гены характеризуются значительно более высокой частотой мутирования. Частота прямых и обратных М. одного и того же гена нередко различна. Мутагены повышают частоту М. примерно одинаково для всех генов, так что соотношение более часто и сравнительно редко мутирующих генов («спектр» М.) остаётся приблизительно одинаковым как при спонтанном, так и при индуцированном мутационным процессе (в случае химических мутагенов могут наблюдаться небольшие различия в спектрах вызываемых ими М.). Лишь у микроорганизмов некоторые химические мутагены сильнее повышают частоту мутирования определённых генов, чем остальных («горячие точки» хромосом). Сходное явление обнаружено при мутагенном действии нуклеиновых кислот и вирусов на многоклеточные организмы. Соотношение общего числа генных М. и хромосомных перестроек различно при действии физических и химических мутагенов — для вторых характерна бо'льшая доля генных М., чем для первых; те или иные различия имеются и в действии разных химических мутагенов.
Далеко не все изменения, вызываемые мутагенами в ДНК клетки, реализуются в М. Во многих случаях поврежденный участок ДНК удаляется в процессе рекомбинации или «вырезается» имеющимися в клетке так называемыми репарирующими ферментами, восстанавливающими структуру ДНК, и при дальнейшей репликации ДНК замещается соответствующим нормальным участком (см. Репарация ). Частота любых М. зависит от многих внешних и внутренних факторов — температуры, парциального давления кислорода, возраста организма, фазы развития и физиологического состояния клетки и др. Большое значение имеют особенности генотипа: даже в пределах одного вида генетически разнящиеся линии могут обладать различной мутабильностью. У ряда организмов описаны так называемые гены-мутаторы, резко повышающие частоту М. Благодаря зависимости мутабильности от генетических факторов, её удаётся повышать или понижать искусственным отбором. Неодинаковая мутабильность разных видов — следствие аналогичного действия естественного отбора в ходе их эволюции.
Значение мутаций для эволюции, селекции и медицины. Основы понимания роли М. в эволюции были заложены в 20-х гг. 20 в. работами советского генетика С. С. Четверикова , английских учёных Дж. Холдейна и Р. Фишера и американского учёного С. Райта, положивших начало развитию эволюционной генетики. Было показано, что все наследственные изменения, служащие материалом для эволюции, обязаны М. (комбинативная изменчивость, возникающая путём образования новых сочетаний генов при скрещивании, в конечном счёте, тоже есть следствие М., обусловливающих генетические различия скрещивающихся особей). В отличие от модификаций , М. не являются однозначной реакцией на вызывающее их воздействие: один и тот же мутагенный фактор приводит к возникновению разнообразных М., затрагивающих те или иные признаки организма и изменяющих их в разных направлениях. Поэтому сами по себе М. не имеют адаптивного характера. Однако постоянно возникающие у любого вида живых существ М., многие из которых к тому же длительно сохраняются в популяции в скрытом виде (рецессивные М.), служат резервом наследственной изменчивости, который позволяет естественному отбору перестраивать наследственные признаки вида, приспосабливая его к меняющимся условиям среды (изменению климата или биоценоза, переселению в новый ареал и т. п.). Т. о., адаптивность эволюционных изменений — следствие сохранения естественным отбором носителей тех М. и их сочетаний, которые оказываются полезными в данной обстановке. При этом М., бывшие в одних условиях вредными или нейтральными, могут оказаться полезными в изменившихся условиях. Наибольшее значение для эволюции имеют генные М. Несмотря на относительную редкость М. каждого гена, общая частота спонтанных генных М. весьма значительна, т. к. генотип многоклеточных организмов состоит из десятков тысяч генов. В результате ту или иную генную М. несёт большая доля образуемых организмом гамет или спор (у высших растений и животных эта доля достигает 5—30%), что создаёт предпосылки для эффективного действия естественного отбора. Хромосомные перестройки, затрудняющие рекомбинацию, — инверсии и транслокации — способствуют репродуктивной изоляции отдельных групп организмов и их последующей дивергенции (см. Видообразование ); дупликации ведут к увеличению числа генов в генотипе и возрастанию их разнообразия вследствие происходящей затем дифференциации генов в дуплицированных участках хромосом. Полиплоидия играет большую роль в эволюции растений; при этом, помимо репродуктивной изоляции, она в ряде случаев восстанавливает плодовитость бесплодных межвидовых гибридов.
С разработкой способов искусственного мутагенеза открылась возможность значительного ускорения селекции — селекционерам стал доступен гораздо больший исходный материал, чем при использовании редких спонтанных мутаций. В 1930 советские учёные А. А. Сапегин и Л. Н. Делоне впервые применили ионизирующую радиацию в селекции пшеницы. В дальнейшем методами радиационной селекции были выведены новые высокоурожайные сорта пшеницы, ячменя, риса, люпина и др. с.-х. растений, ценные штаммы микроорганизмов, используемых в промышленности. В селекции с хорошими результатами применяются и химические мутагены.
Геномные М., хромосомные перестройки и генные М. — причина многих наследственных заболеваний и врождённых уродств у человека. Поэтому ограждение человека от действия мутагенов — важнейшая задача. Огромное значение в этом отношении имело осуществлённое по инициативе СССР запрещение испытаний ядерного оружия в атмосфере, загрязняющих окружающую среду радиоактивными веществами. Очень важно тщательное соблюдение мер защиты человека от радиации в атомной индустрии, при использовании радиоактивных изотопов, рентгеновских лучей и т. п. Необходимо изучение возможного мутагенного действия различных новых лекарственных средств, пестицидов, химических препаратов, применяемых в промышленности, и запрещение производства тех из них, которые окажутся мутагенными. Профилактика вирусных инфекций имеет значение и для защиты потомства от мутагенного действия вирусов. См. также Генетика , Генетика микроорганизмов , Изменчивость , Молекулярная генетика , Радиобиология .
Лит.: Супермутагены. Сб. ст., М., 1966; Лобашев М. Е., Генетика, 2 изд., Л., 1967, гл. 11, 14; Гершкович И., Генетика, пер. с англ., М., 1968, гл. 11—14, 30, 31; Сойфер В. Н., Молекулярные механизмы мутагенеза, М., 1969; Дубинин Н. П., Общая генетика, М., 1970, гл. 17, 20; Ратнер В. А., Принципы организации и механизмы молекулярно-генетических процессов, Новосиб., 1972, гл. 3; Serra J. A., Modern genetics, v. 3, L.-N. Y., 1968, ch. 20—22; Auerbach C., Kilbey B. J., Mutation in Eukaryotes, «Annual Review of Genetics», 1971, v. 5, p. 163; Banks G. R., Mutagenesis: a review of some molecular aspects, «Science Progress», 1971, v. 59, № 236.
С. М. Гершензон.
Мутантные формы ячменя: поздняя полегающая (слева) и ранняя неполегающая (справа).
Соматические мутации, вызванные у растений ионизирующей радиацией (рентгеновские или гамма-лучи): появление белой окраски в красных цветках табака (1) и двух сортов львиного зева (2 и 3); на рис. 3 (слева) — нормальный цветок, справа — мутировавший после облучения.