Большая Советская Энциклопедия (КО)
Большая Советская Энциклопедия (КО) читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Физика Вселенной. Указанные выше постулаты достаточны для суждений об общем характере эволюции и приводят, в частности, к выводу о чрезвычайно высокой начальной (при малых значениях t ) плотности. Однако плотность не даёт исчерпывающей характеристики физического состояния: нужно знать ещё, например, температуру. Задание тем или иным путём характеристик начального состояния представляет третий постулат (гипотезу) релятивистской К., независимый от первых двух. Начиная с 60—70-х гг. обычно принимается постулат «горячей» Вселенной (предполагается высокая начальная температура). Приняв этот постулат, можно сделать несколько очень важных выводов. Во-первых, при очень малых значениях t не могли существовать не только молекулы или атомы, но даже и атомные ядра; существовала лишь некоторая смесь разных элементарных частиц (включая фотоны и нейтрино). На основе физики элементарных частиц можно рассчитать состав такой смеси на разных этапах эволюции. Во-вторых, зная закон расширения, можно указать, когда существовали те или иные условия: плотность вещества изменяется обратно пропорционально R3 или t2 , плотность излучения ещё быстрее — обратно пропорционально R4 и т. д. Поскольку расширение вначале к тому же идёт с большой скоростью, очевидно, что высокие плотность и температура могли существовать только очень короткое время. Действительно, если при t = 0 плотность r = ¥ , то уже при t » 0,01 сек плотность упадёт до r ~ 1011г/см3 . Во Вселенной в это время существуют фотоны, электроны, позитроны, нейтрино и антинейтрино; нуклонов ещё очень мало. В результате последующих превращений получается смесь лёгких ядер (по-видимому, две трети водорода и одна треть гелия); все остальные химические элементы формируются из них, причём намного позднее, в результате ядерных реакций в недрах звёзд. Оставшиеся фотоны и нейтрино на очень ранней стадии расширения перестают взаимодействовать с веществом и должны наблюдаться в настоящее время в виде реликтового излучения , свойства которого можно предсказать на основе теории «горячей» Вселенной. В-третьих, хотя расширение вначале идёт очень быстро, процессы превращений элементарных частиц протекают несравненно быстрее, в результате чего устанавливается последовательность состояний термодинамического равновесия. Это чрезвычайно важное обстоятельство, поскольку такое состояние полностью описывается макроскопическими параметрами (определяемыми скоростью расширения) и совершенно не зависит от предшествующей истории. Поэтому незнание того, что происходило при плотностях, намного превосходящих ядерную (т. е. за первые 10-4 сек расширения), не мешает делать более или менее достоверные суждения о более поздних состояниях, например начиная с t = 10-2 сек, когда состояние вещества является «обычным», известным современной микрофизике.
Наблюдательная проверка. Выводы релятивистской К. имеют радикальный, революционный характер, и вопрос о степени их достоверности представляет большой общенаучный и мировоззренческий интерес. Наибольшее принципиальное значение имеют выводы о нестационарности (расширении) Вселенной, о высокой удельной энтропии («горячая» Вселенная) и об искривлённости пространства. Несколько более частный характер имеют проблемы знака кривизны, а также степени однородности и изотропии Вселенной. Вывод о нестационарности надёжно подтвержден: космологическое красное смещение, наблюдаемое вплоть до z » 2 и больше, свидетельствует о том, что область Вселенной с линейными размерами порядка несколько млрд. пс расширяется, и это расширение длится по меньшей мере несколько млрд. лет (объекты, находящиеся на расстоянии 1 млрд. пс, мы видим такими, какими они были около 3 млрд. лет тому назад). Столь же основательное подтверждение нашла и концепция «горячей» Вселенной: в 1965 было открыто реликтовое радиоизлучение, причём его свойства оказались весьма близкими к предсказанным. Последующее детальное изучение позволило установить, что реликтовое излучение к тому же в высокой мере, с точностью до долей процента, изотропно. Это доказывает, что Вселенная на протяжении более чем 0,99 своей истории изотропна. Это, естественно, повышает доверие к однородным изотропным моделям, которые до этого рассматривались как весьма грубое приближение к действительности.
Наличие же кривизны пространства пока нельзя считать доказанным, хотя оно весьма вероятно, если учитывать подтверждение др. выводов релятивистской К. Кривизна непосредственно никак не может быть измерена. Косвенно она могла бы быть определена, если бы была известна средняя плотность массы или можно было бы определить более точно зависимость красного смещения от расстояния (отклонение от линейной зависимости). Астрономические наблюдения приводят к значениям усреднённой плотности светящегося вещества около 10-31г/см3 . Определить плотность тёмного вещества, а тем более плотность энергии нейтрино гораздо труднее, и неопределённость суммарной плотности из-за этого весьма велика (она может быть, в частности, на два порядка больше усреднённой плотности звёздного вещества). Если принять современное значение постоянной Хаббла Н = 1,7×10-18сек-1 то rkp = 6×10-30г/см3 . Таким образом, на основе имеющихся наблюдательных данных (10-31 < r < 10-29 ) нельзя сделать никакого выбора между открытой (расширяющейся безгранично) и замкнутой (расширение в далёком будущем сменяется сжатием) моделью. Эта неопределённость никак не сказывается на общем характере прошлого и современного расширения, но влияет на возраст Вселенной (длительность расширения) — величину и без того достаточно неопределённую. Если бы расширение происходило с постоянной скоростью, то время, истекшее с момента изначального взрыва, составляло бы T =
= 6×1017сек = 18 млрд. лет. Но расширение, как видно из приведённых выше графиков, идёт с замедлением, поэтому время T, истекшее с момента начала расширения, меньше T . Так, при r = rkp имеем: Т = 2 /3Т = 12 млрд. лет. Для r > rkp , т. е. для замкнутых моделей, Т ещё меньше. С др. стороны, если космологическая постоянная не равна строго нулю, то существуют и др. возможности, например длительная (порядка 10 или более млрд. лет) задержка расширения в прошлом, и Т может составлять десятки миллиардов лет.Нерешенные проблемы. Релятивистская К. объясняет наблюдаемое современное состояние Вселенной, она предсказала неизвестные ранее явления. Но развитие К. поставило и ряд новых, крайне трудных проблем, которые ещё не решены. Так, для изучения состояния вещества с плотностями, намного порядков выше ядерной плотности, нужна совершенно новая физическая теория (предположительно, некий синтез существующей теории тяготения и квантовой теории), Для исследований же состояния вещества при бесконечной плотности (и бесконечной кривизне пространства — времени) пока нет даже надлежащих математических средств. Кроме всего прочего, в такой ситуации должна нарушаться непрерывность времени и вопрос о том, что было «до» t = 0 применительно к обычному (метрическому) понятию времени, лишён смысла; необходимо то или иное обобщённое понятие времени. В решении этой группы проблем делаются лишь первые шаги.
По мере развития теории, а также средств и методов наблюдений будет уточняться само понятие космологической Вселенной. В рамках современной К. довольно естественно считать Метагалактику единственной. Но вопросы топологии пространства — времени разработаны ещё недостаточно для того, чтобы составить представление о всех возможностях, которые могут быть реализованы в природе. Это надо иметь в виду, в частности, и в связи с проблемой возраста Вселенной.