Большая Советская Энциклопедия (КО)
Большая Советская Энциклопедия (КО) читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Космогонические гипотезы 18—19 вв. относились главным образом к происхождению Солнечной системы. Лишь в 20 в. развитие наблюдательной и теоретической астрофизики и физики позволило начать серьёзное изучение происхождения и развития звёзд. В 60-х гг. 20 в. началось изучение происхождения и развития галактик, природа которых была выяснена только в 20-х гг.
Процессы формирования и развития большинства космических тел и их систем протекают чрезвычайно медленно и занимают миллионы и миллиарды лет. Однако наблюдаются и быстрые изменения, вплоть до процессов взрывного характера. При изучении К. звёзд и галактик можно использовать результаты наблюдений многих сходных объектов, возникших в разное время и находящихся на разных стадиях развития. Однако, изучая К. Солнечной системы, приходится опираться только на данные о её структуре и о строении и составе образующих её тел.
Очерк истории космогонических исследований. После общих идей о развитии небесных тел, высказанных ещё греческими философами 4—1 вв. до н. э. (Левкипп, Демокрит, Лукреций), наступил многовековой период господства теологии. Лишь в 17 в. Р. Декарт отбросил миф о сотворении мира и нарисовал картину образования всех небесных тел в результате вихревого движения мельчайших частиц материи. Фундамент научной планетной К. заложил И. Ньютон , который обратил внимание на закономерности движения планет. Открыв основные законы механики и закон всемирного тяготения, он пришёл к выводу, что устройство планетной системы не может быть результатом случайного стечения обстоятельств. В 1745 Ж. Бюффон высказал гипотезу, что планеты возникли из сгустков солнечного вещества, исторгнутых из Солнца ударом огромной кометы (в то время кометы считались массивными телами). В 1755 И. Кант опубликовал книгу «Всеобщая естественная история и теория неба...», в которой впервые дал космогоническое объяснение закономерностям движения планет (см. Канта гипотеза ). В конце 18 в. В. Гершель , наблюдая небо в построенные им большие телескопы, открыл туманности овальной формы, обладающие различными степенями сгущения к центральному яркому ядру. Возникла гипотеза об образовании звёзд из туманностей путём их «сгущения». Опираясь на эти наблюдения Гершеля и на закономерности движения планет, П. Лаплас выдвинул гипотезу о происхождении Солнечной системы (см. Лапласа гипотеза ), во многом сходную с гипотезой Канта. (Когда интересуются главным образом идеей естественного образования Солнечной системы из протяжённой рассеянной среды, часто говорят о единой гипотезе Канта — Лапласа.) Гипотеза Лапласа быстро завоевала признание и благодаря ей астрономия оказалась в числе наук, первыми внёсших идею развития в современное естествознание. Однако на протяжении 19 в. в гипотезе Лапласа выявлялись всё новые и новые трудности, преодолеть которые в то время не удалось. В частности, не удалось объяснить, почему современное Солнце вращается очень медленно, хотя ранее, во время своего сжатия, оно вращалось столь быстро, что происходило отделение вещества под действием центробежной силы.
В конце 19 в. появилась гипотеза американских учёных Ф. Мультона и Т. Чемберлина, предполагавшая образование планет из мелких твёрдых частиц, названных ими «планетезималями». Они ошибочно считали, что обращающиеся вокруг Солнца планетезимали могли возникнуть путём застывания вещества, выброшенного Солнцем в виде огромных протуберанцев. (Такое образование планетезималей противоречит закону сохранения момента количества движения.) В то же время в планетезимальной гипотезе были правильно обрисованы многие черты процесса образования планет. В 20—30-х гг. 20 в. широкой известностью пользовалась гипотеза Дж. Джинса , считавшего, что планеты образовались из раскалённого вещества, вырванного из Солнца притяжением пролетевшей поблизости массивной звезды (см. Джинса гипотеза ).
Идея об образовании звёзд путём сгущения рассеянного туманного вещества сохранилась до нашего времени и разделяется большинством исследователей. После открытия механического эквивалента тепла была подсчитана энергия. освобождающаяся при сжатии звезды (Г. Гельмгольц , 1854; У. Томсон , 1862). Оказалось, что её хватило бы для поддержания излучения Солнца в течение 107 —108 лет. В то время такой срок казался достаточным. Но позже изучение истории Земли показало, что Солнце излучает несравненно дольше. В начале 20 в. проблему источников энергии звёзд безуспешно пытались решить с помощью радиоактивных элементов, в то время лишь недавно открытых. Установление взаимосвязи массы и энергии, показавшее, что звёзды, излучая, теряют массу, привело к гипотезам о возможности аннигиляции вещества в недрах звёзд, т. е. превращения вещества в излучение. В этом случае превращение массивных звёзд в звёзды малой массы длилось бы 1013 —1015 лет. Правильной оказалась гипотеза о трансмутации элементов, т. е. об образовании более сложных атомных ядер из простых, в первую очередь — гелия из водорода. В 1938—39 были выяснены конкретные ядерные реакции, могущие обеспечить излучение звёзд [К. Вейцзеккер (Германия), Х. Бете ], и это явилось началом современного этапа развития звёздной К.
В разработке К. галактик делаются лишь первые шаги. Проводится классификация галактик и их скоплений. Изучаются эволюционные изменения звёзд и газовой составляющей галактик, их химического состава и др. параметров. Изучается природа начальных возмущении, развитие которых привело к распаду расширяющегося газа Метагалактики на отдельные сгущения. Рассчитывается, как зависят морфологический тип и др. свойства галактик от массы и вращения этих первичных сгущений. Большое внимание привлекают компактные плотные ядра, имеющиеся у ряда галактик. Изучается природа мощного радиоизлучения, которым обладают некоторые галактики, и связь его с взрывными процессами в ядрах. Мощные взрывы, происходящие в квазарах и ядрах активных галактик — сейфертовских, N-галактик и др., — представляют собой существенные этапы эволюции галактик. К. развивается, опираясь на большое количество фактов, охватывающих самые различные свойства небесных тел.
Планетная космогония. При выяснении вопроса, в каком состоянии находилось ранее вещество, ныне образующее планеты, важную роль играют закономерности движения планет — их обращение вокруг Солнца в одном направлении по почти круговым орбитам, лежащим почти в одной плоскости, — и деление планет на 2 группы, отличающиеся по массе и составу,— группу близких к Солнцу планет земного типа и группу далёких от Солнца планет-гигантов. При выяснении вопроса о том, откуда взялось около Солнца допланетное вещество, важную роль играет проблема распределения момента количества движения (МКД) между Солнцем и планетами: почему всего 2% общего МКД всей Солнечной системы заключено в осевом вращении Солнца, а 98% приходится на орбитальное движение планет, суммарная масса которых в 750 раз меньше массы Солнца?
В 40-х гг. 20 в., после крушения гипотезы Джинса, планетная К. вернулась к классическим идеям Канта и Лапласа об образовании планет из рассеянного вещества (см. Шмидта гипотеза ). В настоящее время (70-е гг. 20 в.) является общепризнанным, что большинство планет аккумулировалось из твёрдого, а Юпитер и Сатурн также и из газового вещества, По-видимому, существовавшее вблизи экваториальной плоскости Солнца газово-пылевое облако простиралось до современных границ Солнечной системы.
Исходя из господствующих представлений об образовании Солнца из сжимающейся и вращающейся туманности, большинство астрономов считает, что протопланетное облако той или иной массы отделилось под действием центробежной силы от этой туманности на заключительной стадии её сжатия [Ф. Хойл (Великобритания), А. Камерон (США), Э. Шацман (Франция)]. Но, в отличие от Лапласа, рассматривавшего это отделение чисто механически, сейчас учитываются эффекты, связанные с наличием магнитного поля и корпускулярного излучения Солнца, Именно это позволило объяснить распределение МКД между Солнцем и планетами в рамках гипотез о совместном образовании Солнца и протопланетного облака. Наряду с этими гипотезами высказывались гипотезы о захвате вещества уже сформировавшимся Солнцем (О. Ю. Шмидт , Х. Альфвен ).