Большая Советская Энциклопедия (КО)
Большая Советская Энциклопедия (КО) читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Т. о., одновременно с развитием описанного выше ядерного каскада происходит (за счёт распада p ) его «обрастание» электронно-фотонной компонентой, а также (за счёт распадов p+ и p- ) — проникающей мюонной компонентой (рис. 11 ).
Высокая проникающая способность в сочетании с прямо пропорциональным плотности вещества коэффициент поглощения при умеренных энергиях (десятки и сотни Гэв ) делает проникающую компоненту К. л. очень удобным средством для подземной геофизической и инженерной разведки (рис. 12 ). Измеряя интенсивность К. л. телескопом счётчиков в штольнях и сравнивая полученные данные с известными кривыми поглощения К. л. в воде или грунте, можно обнаруживать или уточнять положения рудных пластов и пустот, а также измерять весовую нагрузку на грунт от стоящих на нём сооружений.
При энергиях порядка 1012эв и выше наряду с ионизационными потерями энергии мюонов становятся всё более существенными потери энергии на образование электронно-позитронных пар и тормозное излучение, а также на прямые взаимодействия с атомными ядрами вещества. Вследствие этого на глубинах ³ 8 км водного эквивалента под углами ³ 50° к вертикали поток космических мюонов оказывается ничтожно малым. Эксперименты, проводившиеся с 1964 в шахтах Индии и Южной Африки с установками огромной площади, позволили обнаружить на этих глубинах под углами > 50° дополнительный поток мюонов, единственным источником которых могли быть только взаимодействия нейтрино с атомными ядрами вещества. Эти опыты представили собой уникальную возможность изучения свойств самой проникающей — нейтринной — компоненты К. л. Наиболее важной проблемой при этом является изучение взаимодействия нейтрино сверхвысоких энергий с веществом; в частности, для выяснения структуры элементарных частиц особый интерес представляет исследование увеличения поперечного сечения взаимодействия (уменьшения «прозрачности» вещества) с ростом энергии нейтрино. Такое возрастание сечения взаимодействия нейтрино установлено на ускорителях до энергий 1010эв. Очень важно исследовать, будет ли продолжаться этот рост сечения вплоть до энергий 1015эв (соответствующих характерному расстоянию слабых взаимодействий 6×10-17см ).
Измерения потоков солнечных нейтрино значительно более низких энергий (~ 1 Мэв ) позволят подойти к решению и другой, космофизической, проблемы нейтринной физики. Это связано с использованием огромной проникающей способности нейтрино для косвенного измерения температуры недр Солнца, от которой зависит характер протекающих в нём ядерных реакций — основного источника солнечной энергии (см. Нейтринная астрономия ).
Проблемы и перспективы. Дальнейшее изучение К. л. в лабораториях и на космических станциях продолжается в двух направлениях. На космофизическом направлении выясняется природа тех основных процессов, в которых может происходить ускорение частиц до высоких и сверхвысоких энергий (в сверхновых звёздах, пульсарах, отчасти на Солнце), а также свойства межпланетной и межзвёздной среды по вариациям интенсивности К. л., особенностям их состава, углового и энергетического распределения. Особенно большие надежды возлагаются на исследования в области рентгеновской и гамма-астрономии в тесной связи с радиоастрономическими и астрономическими наблюдениями возможных источников К. л.
Интересен также вопрос о роли нейтрино как одной из компонент первичных К. л. при энергиях ³ 1020 эв. Возникновение широких атмосферных ливней столь высоких энергий уже трудно объяснить заряженными частицами, ускоряемыми в пределах нашей Галактики, а частицы межгалактического происхождения не могут набрать таких энергий из-за столкновений с фотонами реликтового излучения, заполняющего Метагалактику. Поэтому приходится учитывать возможность непрерывного роста непрозрачности вещества (в частности, атмосферного воздуха) для потоков космического нейтрино, которые в этом случае смогли бы стать «предками» самых мощных широких ливней.
Делаются попытки окончательно решить неясную пока проблему существования файрболов — гипотетических частиц (с массами ~ 3—5 Гэв, а иногда и значительно выше), почти мгновенно распадающихся после своего рождения на отдельные частицы (в основном пионы) по законам статистической физики. Далеко не закончены дискуссии о степени применимости описания множественного рождения частиц моделями гидродинамических и термодинамических типов, в которых образуемая при ядерных столкновениях высоковозбуждённая «адронная материя» с неопределённым числом частиц расширяется вплоть до её распада на отдельные свободные частицы.
Лит.: Гинзбург В. Л., Сыроватский С. И., Происхождение космических лучей, М., 1963; Дорман Л. И., Вариации космических лучей и исследование космоса, М.. 1963; Дорман Л. И., Мирошниченко Л. И., Солнечные космические лучи, М., 1968; Дорман Л. И., Смирнов В. С., Тясто М. И., Космические лучи в магнитном поле Земли, М., 1971; Мурзин В. С., Сарычева Л. И., Космические лучи и их взаимодействие, М., 1968; Бугаев Э. В., Котов Ю. Д., Розенталь И. Л., Космические мюоны и нейтрино, М., 1970; Бондаренко В. М., Использование космических лучей в геологии, М., 1965. Популярная лит.: Росси Б., Космические лучи, пер. с англ., М., 1966; Добротин Н. А., Космические лучи, М., 1963; Жданов Г. Б., Частицы высоких энергии, М., 1965; Гинзбург В. Л., Происхождение космических лучей, М., 1968.
Г. Б. Жданов.
Рис. 5. Одиннадцатилетний цикл солнечной активности, характеризуемой числом групп пятен W на Солнце (а), и относительных изменений интенсивности I космических лучей всех энергий, по данным наблюдений высокоширотной станции (б). По оси абсцисс отложены годы.
Рис. 9. Каскадные кривые, показывающие изменение числа электронов (и позитронов) в зависимости от толщины пройденного ливнем слоя свинца при начальных энергиях электронов 1,1 и 3 Гэв .
Рис. 1. Следы ядер первичных космических лучей в ядерной фотоэмульсии (Z — атомный номер химического элемента).
Рис. 8. Фотография, показывающая развитие электронно-фотонного ливня в латунных пластинках, установленных в камере Вильсона.
Рис. 4. Схема, иллюстрирующая характер солнечного ветра и структуру регулярного межпланетного магнитного поля (спираль) в области модуляции галактических космических лучей; штриховая окружность — орбита Земли.
Рис. 2. Карта изокосм — линий равной интенсивности космических лучей — на высотах ~ 200 км , по данным третьего советского корабля-спутника (1960) [сплошная жирная линия — геомагнитный экватор]; прерывистые линии — менее надёжные данные, основанные на малом числе измерений. Интенсивность указана в относительных единицах.
Рис. 3. Энергетический спектр первичных космических лучей (в логарифмическом масштабе): а — дифференциальный спектр (зависимость интенсивности I от энергии E) в области умеренной энергии для протонов (р) и a-частиц; нанесены также экспериментальные точки; б — интегральный спектор (для всех частиц) в области высоких энергий [экспериментальные точки получены на спутниках серии «Протон» (1, 2, 3)]; в — в области сверхвысоких энергий [пунктирные линии ограничивают экспериментальные значения I].