Большая Советская Энциклопедия (КО)
Большая Советская Энциклопедия (КО) читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Линия Земля — борт КЛА (З — Б) и борт КЛА — Земля (Б — З) несут различную информационную нагрузку и имеют различный энергетический потенциал. Линия З — Б обеспечивает передачу на КЛА сигналов управления, траекторных измерений, телефонную, телеграфную, связь с космонавтами на обитаемых КК. Линия Б — З, как правило, имеет значительно более низкий энергетический потенциал, т. к. мощность передатчика КЛА ниже мощности передатчика земной станции в линии З — Б (обычные мощности на КЛА — единицы-десятки вт, на земной станции — единицы-десятки квт ). Однако основной поток информации идёт именно по линии Б — З. Это вынуждает применять на земных пунктах для приёма информации с КЛА антенны с весьма большой эффективной площадью (десятки м2 ), а в случае приёма информации с межпланетных КЛА (поскольку мощность принимаемого сигнала уменьшается пропорционально квадрату расстояния) необходимы эффективные площади в сотни и тысячи м2 . Эффективные площади 2—5 тыс. м2 достигаются только в уникальных дорогостоящих антенных системах. Посредством таких антенных систем может быть обеспечена телефонная связь на межпланетных расстояниях.
Начало радиосвязи с человеком в космосе было положено 12 апреля 1961, когда лётчик-космонавт Ю. А. Гагарин впервые в истории человечества облетел Землю на КК «Восток» и во время полёта поддерживал устойчивую двустороннюю телефонно-телеграфную связь с Землёй на метровых и декаметровых волнах. В последующих полётах КК «Восток» и «Восход» радиосвязь с Землёй совершенствовалась и была с успехом опробована между КК в групповых полётах. Во время полёта КК «Восток-2» в августе 1961 впервые из космоса на Землю передавалось телевизионное изображение лётчика-космонавта Г. С. Титова. При передаче телевизионного изображения для сужения спектра частот число кадров было уменьшено до 10 в сек. В дальнейшем стали применяться телевизионные системы с обычным стандартом (см. Космовидение ). Наибольшая дальность двусторонней радиосвязи достигнута при полётах АМС к планетам. Например, при полётах к Марсу дальность связи между земным пунктом и АМС достигала 350 млн. км, к Юпитеру — 800—900 млн. км. С целью обеспечения таких дальних связей на АМС обычно используется направленная на Землю антенна.
Связь через ИСЗ. Обычно связь на большие расстояния обеспечивается по радиорелейным линиям прямой видимости, состоящим из двух оконечных и ряда промежуточных пунктов-ретрансляторов, отстоящих друг от друга на расстояние прямой видимости (50—70 км ). При установке одного промежуточного ретранслятора на борту ИСЗ с высокой орбитой можно осуществить связь между двумя пунктами, удалёнными один от другого на тысячи км. Максимальная дальность непосредственной связи при этом определяется возможностью видения ИСЗ одновременно с каждого пункта. Связные ИСЗ могут применяться как в отдельных линиях связи, так и в сетях радиорелейных линий для передачи телевизионных программ, многоканальной телефонии и телеграфии и др. видов информации. Примером сети, имеющей большое число земных станций, может служить система действующая в Советском Союзе с 1967. Для связи могут использоваться ИСЗ, обращающиеся по различным орбитам и на разных высотах. Основные варианты орбит для связных ИСЗ: круговая стационарная, сильно вытянутая эллиптическая синхронная, средневысокая круговая, низкая круговая. ИСЗ на стационарной орбите (стационарный ИСЗ) постоянно находится («висит») над выбранной точкой экватора и обеспечивает круглосуточную связь между земными станциями на широтах меньше 75° в радиусе до 8000 км от точки, над которой расположен спутник, например ИСЗ «Интелсат». Три таких ИСЗ, находящихся на равном удалении вдоль экватора, осуществляют связь любых земных станций в пределах указанных широт. Для районов, расположенных на широтах выше 70—75°, наиболее выгодны сильно вытянутые эллиптические синхронные орбиты с апогеем над центром обслуживаемой линии связи и с периодом обращения ИСЗ в половину или целые сутки (см. ИСЗ «Молния» ). При надлежащем выборе угла наклонения и места расположения апогея орбиты спутник будет значительную часть суток находиться в пределах видимости из заданного района. Для работы с ИСЗ на стационарной или эллиптической синхронной орбите применяются на земных пунктах связи антенны большого размера, т. к. расстояние ИСЗ — земной пункт превышает 30000 км и мощность принимаемых сигналов мала. ИСЗ на средневысоких и низких круговых орбитах, например ИСЗ «Курьер», «Реле», обеспечивают значительно большие мощности принимаемых сигналов. Однако уменьшение высоты полёта сокращает время взаимной видимости спутника и земного пункта связи и приводит в конечном счёте к значительному увеличению количества спутников, требуемых для непрерывной связи. Кроме того, усложняется система слежения и наведения антенн земных станций. При малой высоте полёта непосредственная связь между значительно удалёнными пунктами невозможна и приходится применять систему радиолиний с задержанной ретрансляцией. Однако в этом случае уровни принимаемых сигналов достаточно велики и не нужны большие и дорогостоящие антенные системы, благодаря чему связь с низкими ИСЗ может проводиться даже небольшими подвижными пунктами. Связной ИСЗ для транзитной передачи сигналов может быть оснащен активным ретранслятором, обеспечивающим также усиление сигналов, или представлять собой пассивный ретранслятор, т. е. отражатель. Кроме ИСЗ в виде отражателя были предложены и испытаны линии связи с рассеянными отражателями в виде пояса иголок, облака ионизированных частиц. Пассивный ретранслятор может обслуживать радиосеть, состоящую из большого числа линий с различными частотами радиосигналов, т. к. он отражает или рассеивает энергию многих одновременно приходящих радиосигналов без взаимных помех, например ИСЗ «Эхо». В отличие от него, активный ретранслятор может обслуживать сеть связи только с ограниченным числом линий, причём для устранения взаимных помех необходимо применять частотное, временное или кодовое разделение сигналов, поддерживать необходимый их уровень и не допускать перегрузок ретранслятора. Несмотря на это, наибольшее распространение имеют системы с активными ретрансляторами, которые обеспечивают одновременную передачу сообщений по нескольким (до десятка) телевизионным или нескольким тысячам телефонных каналов, например ИСЗ «Молния», «Интелсат», «Синком».
Для экономичности связи применяют многоканальные линии радиосвязи, что приводит к необходимости увеличения полосы пропускания частот в линии (см. Многоканальная связь ). Широкая полоса требуется также для ретрансляции телевизионных сигналов. С расширением полосы пропускания растет опасность искажения сообщений помехами радиоприёму . Поэтому приём сообщений с допустимыми искажениями — важнейшая задача, решаемая увеличением мощности радиосигналов, выбором частот связи, уменьшением уровня шумов радиоприёмников, применением эффективного кодирования, выбором типа модуляции, способа приёма и обработки радиосигналов при малом отношении сигнал/помеха и др. Например, частоты радиосигналов выбирают в пределах от 1 до 10 Ггц, т. к. на меньших частотах резко растут помехи от шумов космоса , а на больших — от шумов атмосферы ; в первых каскадах усилителей радиоприёмников земных станций используют малошумящие квантовые усилители и параметрические усилители, охлаждаемые жидким гелием.
В линии связи с пассивным ретранслятором для обеспечения необходимого уровня принимаемого сигнала увеличивают мощность передатчика и размеры антенны земной станции, размеры отражателя ретранслятора или переходят к ретрансляторам с направленным рассеянием энергии на земную станцию, а также сужают полосу пропускания частот в линии и понижают скорость передачи сообщений. Перечисленные меры имеют свои пределы, т. к. увеличивают стоимость оборудования линии связи и её эксплуатации.