-->

Большая Советская Энциклопедия (КО)

На нашем литературном портале можно бесплатно читать книгу Большая Советская Энциклопедия (КО), Большая Советская Энциклопедия . "БСЭ"-- . Жанр: Энциклопедии. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Большая Советская Энциклопедия (КО)
Название: Большая Советская Энциклопедия (КО)
Дата добавления: 15 январь 2020
Количество просмотров: 82
Читать онлайн

Большая Советская Энциклопедия (КО) читать книгу онлайн

Большая Советская Энциклопедия (КО) - читать бесплатно онлайн , автор Большая Советская Энциклопедия . "БСЭ"

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

  Лит.: Шмальгаузен И. И., Основы сравнительной анатомии позвоночных животных, 4 изд., М., 1947; его же, Организм, как целое в индивидуальном и историческом развитии, М.— Л., 1942; Северцов А. Н., Морфологические закономерности эволюции, М., 1949 (Собр. соч., т. 5); Balinsky В. Т., An introduction to embryology, 2 cd., Phil.— L., 1965.

  А. А. Махотин.

Корреляция (в лингвистике)

Корреля'ция в лингвистике, противопоставленность или сближение единиц языка по определённым свойствам (на всех уровнях языковой системы). Более всего развита теория фонологической К. (чередование фонем, с которым связано какое-либо морфологическое различие, или образующее соотносительные ряды, которые противополагаются по одному какому-либо различительному признаку). Различают понятия коррелятивной пары (франц. а̃ — а, õ — o, е̃ — е, œ̃ — œ), признака (назализация во франц., лабиовеляризация в языках шона семьи банту), ряда (ã, õ, ẽ,œ̃), пучка (в арчинском яз. шестичленный z — s — ts — ts'— `ts — `s ) и др.

Корреляция (в матем. статистике)

Корреля'ция в математической статистике, вероятностная или статистическая зависимость, не имеющая, вообще говоря, строго функционального характера. В отличие от функциональной, корреляционная зависимость возникает тогда, когда один из признаков зависит не только от данного второго, но и от ряда случайных факторов или же когда среди условий, от которых зависят и тот и другой признаки, имеются общие для них обоих условия. Пример такого рода зависимости даёт корреляционная таблица. Из таблицы видно, что при увеличении высоты сосен в среднем растет и диаметр их стволов; однако сосны заданной высоты (например, 23 м ) имеют распределение диаметров с довольно большим рассеянием. Если в среднем 23-метровые сосны толще 22-метровых, то для отдельных сосен это соотношение может заметным образом нарушаться. Статистическая К. в обследованной конечной совокупности наиболее интересна тогда, когда она указывает на существование закономерной связи между изучаемыми явлениями.

  В основе теории К. лежит предположение о том, что изучаемые явления подчинены определённым вероятностным закономерностям (см. Вероятность , Вероятностей теория ). Зависимость между двумя случайными событиями проявляется в том, что условная вероятность одного из них при наступлении другого отличается от безусловной вероятности. Аналогично, влияние одной случайной величины на другую характеризуется законами условных распределений первой при фиксированных значениях второй. Пусть для каждого возможного значения Х = х определено условное математическое ожидание у (х) = Е (YIX = х ) величины Y (см. Математическое ожидание ). Функция у (х) называется регрессией величины Y по X, а её график — линией регрессии Y по X. Зависимость Y от Х проявляется в изменении средних значений Y при изменении X, хотя при каждом Х = х величина Y остаётся случайной величиной с определенным рассеянием. Пусть mY = Е (Y) — безусловное математическое ожидание Y . Если величины независимы, то все условные математические ожидания Y не зависят от х и совпадают с безусловными:

у (х) = Е (YIX = х ) = Е (Y) = mY .

  Обратное заключение не всегда справедливо. Для выяснения вопроса, насколько хорошо регрессия передаёт изменение Y при изменении X, используется условная дисперсия Y при данном значении Х = х или её средняя величина — дисперсия Y относительно линии регрессии (мера рассеяния около линии регрессии):

Большая Советская Энциклопедия (КО) - i-images-176500903.png
2.

При строгой функциональной зависимости величина Y при данном Х = х принимает лишь одно определенное значение, то есть рассеяние около линии регрессии равно нулю.

  Линия регрессии может быть приближённо восстановлена по достаточно обширной корреляционной таблице: за приближённое значение у (х) принимают среднее из тех наблюдённых значений Y, которым соответствует значение Х = х. На рисунке изображена приближённая линия регрессии для зависимости среднего диаметра сосен от высоты в соответствии с таблицей. В средней части эта линия, по-видимому, хорошо выражает действительная закономерность. Если число наблюдений, соответствующих некоторым значениям X , недостаточно велико, то такой метод может привести к совершенно случайным результатам. Так, точки линии, соответствующие высотам 29 и 30 м, ненадёжны ввиду малочисленности материала. См. Регрессия .

  В случае К. двух количественных случайных признаков обычным показателем концентрации распределения вблизи линии регрессии служит корреляционное отношение

Большая Советская Энциклопедия (КО) - i-images-100220467.png
,

где

Большая Советская Энциклопедия (КО) - i-images-137219511.png
  — дисперсия Y (аналогично определяется корреляционное отношение
Большая Советская Энциклопедия (КО) - i-images-191318326.png
, но между
Большая Советская Энциклопедия (КО) - i-images-161106926.png
 и
Большая Советская Энциклопедия (КО) - i-images-180912157.png
 нет какой-либо простой зависимости). Величина
Большая Советская Энциклопедия (КО) - i-images-154556828.png
, изменяющаяся от 0 до 1, равна нулю тогда и только тогда, когда регрессия имеет вид у (x) = mY , в этом случае говорят, что Y некоррелирована с X,
Большая Советская Энциклопедия (КО) - i-images-145021343.png
 
равняется единице в случае точной функциональной зависимости Y от X. Наиболее употребителен при измерении степени зависимости коэффициент корреляции между Х и Y

Большая Советская Энциклопедия (КО) - i-images-198610156.png

всегда —1 £ r £ 1. Однако практическое использование коэффициента К. в качестве меры зависимости оправдано лишь тогда, когда совместное распределение пары (X, Y) нормально или приближённо нормально (см. Нормальное распределение ); употребление r как меры зависимости между произвольными Y и Х приводит иногда к ошибочным выводам, т. к. r может равняться нулю даже тогда, когда Y строго зависит от X . Если двумерное распределение Х и Y нормально, то линии регрессии Y по Х и Х по Y суть прямые у = mY + bY (x — mx) и х = mx+ bx (у — mY ), где

Большая Советская Энциклопедия (КО) - i-images-162745699.png
 и
Большая Советская Энциклопедия (КО) - i-images-128059518.png
; bY и bX именуются коэффициентами регрессии, причём

Большая Советская Энциклопедия (КО) - i-images-107137356.png
.

  Так как в этом случае

Е (Y - y (x))2 = s2Y ( 1 - r2 )

и

Е (Y - x (y))2 = s2X ( 1 - r2 )

  то очевидно, что r (корреляционные отношения совпадают с r2 полностью определяет степень концентрации распределения вблизи линий регрессии: в предельном случае r = ± 1 прямые регрессии сливаются в одну, что соответствует строгой линейной зависимости между Y и X , при r = 0 величины не коррелированы.

Перейти на страницу:
Комментариев (0)
название