Большая Советская Энциклопедия (НИ)

На нашем литературном портале можно бесплатно читать книгу Большая Советская Энциклопедия (НИ), Большая Советская Энциклопедия . "БСЭ"-- . Жанр: Энциклопедии. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Большая Советская Энциклопедия (НИ)
Название: Большая Советская Энциклопедия (НИ)
Дата добавления: 15 январь 2020
Количество просмотров: 91
Читать онлайн

Большая Советская Энциклопедия (НИ) читать книгу онлайн

Большая Советская Энциклопедия (НИ) - читать бесплатно онлайн , автор Большая Советская Энциклопедия . "БСЭ"

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 48 49 50 51 52 53 54 55 56 ... 107 ВПЕРЕД
Перейти на страницу:

  Измерение низких температур. Первичным термометрическим прибором для измерения термодинамической температуры вплоть до 1 К служит газовый термометр. Др. вариантами первичного термометра являются акустический и шумовой термометры, действие которых основано на связи термодинамической температуры соответственно со значением скорости звука в газе и интенсивностью тепловых флуктуаций напряжения в электрической цепи. Первичные прецезионные термометры используются в основном для определения температур легко воспроизводимых фазовых равновесий в однокомпонентных системах (т. н. реперных точек), которые служат опорными температурными точками Международной практической температурной шкалы (МПТШ-68). В области Н. т. такими реперными точками являются: тройная точка равновесного водорода (13, 81 К), точка равновесия между жидкой и газообразной фазами равновесного водорода при давлении 25/76 нормальной атмосферы (17,042 К), точка кипения TN равновесного водорода (20,28 К), TN неона (27,102 К), тройная точка кислорода (54,361 К), TN кислорода (90,188 К).

  Для воспроизведения любого значения температуры от 630,74 °С до 13,81 К по МПТШ-68 с точностью ~ 0,001 К служит платиновый термометр сопротивления. В диапазоне Н. т. температура по МПТШ-68 отличается от истинного термодинамического значения не более чем на 0,01 К. МПТШ-68, пока не продлена ниже 13,8 К, ввиду отсутствия в этой области Н. т. вторичного термометра, не уступающего по чувствительности, точности и воспроизводимости показаний платиновому термометру сопротивления при более высоких температурах. В диапазоне 0,3—5,2 К низкотемпературная термометрия основана на зависимости давления насыщенных паров ps гелия от температуры Т, устанавливаемой с помощью газового термометра. Эта зависимость была принята в качестве международной температурной шкалы в области 1,5—5,2 К (шкала 4He, 1958) и 0,3—3,3 К (шкала 3He, 1962). Зависимость ps (T) в этих температурных диапазонах не может быть представлена простой аналитической формулой и поэтому табулируется; табличные данные обеспечивают точность определения температуры до тысячной доли Кельвина.

  В области Н. т. для целей практической термометрии применяют главным образом термометры сопротивления (до 20 К — медный; в области водородных и гелиевых температур — вплоть до 1 мК угольные, сопротивление которых возрастает при понижении температуры). Применяют также термометры сопротивления из чистого германия. Высокая стабильность и достаточная чувствительность делают их удобным инструментом измерения температуры ниже 100 К.

  Существует ряд др. чувствительных к изменениям температуры устройств, которые могут быть использованы в качестве вторичных термометров для измерения Н. т.: термопары, термисторы, полупроводниковые диоды, датчики из сверхпроводящих сплавов (в области гелиевых и водородных температур).

  Ниже 1 К газовым термометром пользоваться практически нельзя. Для определения термодинамической температуры в этой области используют магнитные и ядерные методы. В магнитной термометриипользуются понятием магнитной температуры Т*, которую определяют из измерений магнитной восприимчивостиc парамагнитной соли. Согласно Кюри закону, при достаточно высоких температурах c ~ 1/T*. Для многих солей закон Кюри справедлив и при гелиевых температурах. Экстраполируя эту закономерность в область сверхнизких температур, определяют магнитную температуру как величину, обратно пропорциональную восприимчивости. Для получения точных результатов необходимо учитывать различные побочные факторы: анизотропию восприимчивости, геометрическую форму образца и др. Область температур, в которой магнитная температурная шкала достаточно близка к термодинамической, зависит от конкретной соли. Наиболее широко для измерения сверхнизких температур до 6 мК применяют церий-магниевый нитрат, для которого расхождение шкал при указанной температуре меньше 0,1 мК. В основе ядерных методов измерения Н. т. лежит принцип квантовой статистической физики, согласно которому равновесная заселенность дискретных уровней энергии системы зависит от температуры. В одном из таких методов измеряется интенсивность линии ядерного магнитного резонанса, определяемая разностью заселённости уровней ядерных магнитных моментов в магнитном поле. В др. методе определяется зависящее от температуры отношение интенсивностей компонент, на которые расщепляется линия резонансного гамма-излучения (Мёссбауэра эффект) во внутреннем магнитном поле ферромагнетика.

  Аналогом термометрии по давлению насыщенных паров в области сверхнизких температур является измерение температуры в диапазоне 30—100 мК по осмотическому давлению3He в смеси 3He — 4He. Абсолютная точность измерений — около 2 мК при чувствительности осмотического термометра 0,01 мК.

  Физика низких температур. Применение Н. т. сыграло решающую роль в изучении конденсированного состояния. Особенно много новых и принципиальных фактов и закономерностей было открыто при изучении свойств различных веществ при гелиевых температурах. Это привело к развитию специального раздела физики — физики Н. т. При понижении температуры в свойствах веществ начинают проявляться особенности, связанные с наличием взаимодействий, которые при обычных температурах подавляются сильным тепловым движением атомов. Новые закономерности, обнаруженные при Н. т., могут быть последовательно объяснены только на основе квантовой механики. В частности, принцип неопределённости квантовой механики и вытекающее из него существование нулевых колебаний при абсолютном нуле температуры объясняют тот факт, что гелий остаётся в жидком состоянии вплоть до 0 К (см. Квантовая жидкость). Наиболее ярко квантовые закономерности проявляются при Н. т. в явлениях сверхтекучести и сверхпроводимости. Изучение этих явлений составляет важную часть физики Н. т. С 60-х гг. 20 в. открыт ряд интересных эффектов, в которых особое значение имеет пространственная когерентность волновых функций на макроскопических расстояниях (сверхпроводящее туннелирование, Джозефсона эффект). Большое значение имеет изучение свойств жидкого 3He, который представляет собой пример нейтральной квантовой ферми-жидкости. Как теперь выяснено, при температурах около 3 мК и давлении около 34 бар3He претерпевает фазовое превращение, сопровождающееся значительным уменьшением вязкости (переходит в сверхтекучее состояние).

  Развитие физики Н. т. в значительной степени способствовало созданию квантовой теории твёрдого тела, в частности общей теоретической схемы, согласно которой состояние вещества при Н. т. может рассматриваться как суперпозиция идеально упорядоченного состояния, соответствующего 0 К, и газа элементарных возбуждений — квазичастиц. Введение различных типов квазичастиц (фононы, дырки, магноны и др.) позволяет описать многообразие свойств веществ при Н. т. Термодинамические свойства газа элементарных возбуждений определяют наблюдаемые макроскопические равновесные свойства вещества. В свою очередь, методы статистической физики позволяют предсказать свойства газа возбуждений из характера связи энергии и импульса квазичастиц (закона дисперсии). Изучение теплоёмкости, теплопроводности и др. тепловых и кинетических свойств твёрдых тел при Н. т. даёт возможность установить закон дисперсии для фононов и др. квазичастиц. Температурная зависимость намагниченности ферро- и антиферромагнетиков объясняется в рамках закона дисперсии магнонов (спиновых волн). Изучение закона дисперсии электронов в металлах составляет ещё один важный раздел физики Н. т. Ослабление тепловых колебаний решётки при гелиевых температурах и применение чистых веществ позволили выяснить особенности поведения электронов в металлах (см. Гальваномагнитные явления, Де Хааза — ван Альфена эффект, Циклотронный резонанс). Применение Н. т. играет большую роль при изучении различных видов магнитного резонанса.

1 ... 48 49 50 51 52 53 54 55 56 ... 107 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название