-->

Большая Советская Энциклопедия (КИ)

На нашем литературном портале можно бесплатно читать книгу Большая Советская Энциклопедия (КИ), Большая Советская Энциклопедия . "БСЭ"-- . Жанр: Энциклопедии. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Большая Советская Энциклопедия (КИ)
Название: Большая Советская Энциклопедия (КИ)
Дата добавления: 15 январь 2020
Количество просмотров: 134
Читать онлайн

Большая Советская Энциклопедия (КИ) читать книгу онлайн

Большая Советская Энциклопедия (КИ) - читать бесплатно онлайн , автор Большая Советская Энциклопедия . "БСЭ"

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

  В более сложных следящих системах задача состоит в поддержании (возможно более точном) некоторой фиксированной функциональной зависимости между множеством самопроизвольно меняющихся параметров и заданным множеством регулируемых параметров. Примером может служить система, непрерывно сопровождающая лучом прожектора маневрирующий произвольным образом самолет.

  В т. н. системах оптимального управления основной целью является поддержание максимального (или минимального) значения некоторой функции от двух групп параметров, называемой критерием оптимального управления. Параметры первой группы (внешние условия) меняются независимо от системы, параметры второй группы являются регулируемыми, т. е. их значения могут меняться под воздействием управляющих сигналов системы.

  Простейший пример оптимального управления снова даёт задача регулирования температуры комнатного воздуха при дополнительном условии учёта изменений его влажности. Величина температуры воздуха, дающая ощущение наибольшего комфорта, зависит от его влажности. Если влажность всё время меняется, а система может управлять лишь изменением температуры, то естественно в качестве цели управления поставить задачу поддержания температуры, которая давала бы ощущение наибольшего комфорта. Это и будет задача оптимального управления. Системы оптимального управления имеют большое значение в задачах управления экономикой.

  В простейшем случае оптимальное управление может сводиться к задаче поддержания наибольшего (или наименьшего) возможного при заданных условиях значения регулируемого параметра. В этом случае говорят о системах экстремального регулирования.

  В случае, когда нерегулируемые параметры в системе оптимального управления на том или ином отрезке времени меняются, функция системы сводится к поддержанию таких постоянных значений регулируемых параметров, которые обеспечивают максимизацию (или минимизацию) соответствующего критерия оптимального управления. Здесь, как и в случае обычного регулирования, возникает задача устойчивости управления. При проектировании относительно несложных систем подобная устойчивость достигается за счет соответствующего выбора параметров проектируемой системы. В более сложных случаях, когда количество возмущающих воздействий и размерность системы очень велики, иногда оказывается удобным для достижения устойчивости прибегать к самонастройке и самоорганизации систем. При этом некоторая часть параметров, определяющая характер существующих в системе связей, не фиксируется заранее и может изменяться системой в процессе ее функционирования. Система имеет специальный блок, регистрирующий характер переходных процессов в системе при выведении ее из равновесия. При обнаружении неустойчивости переходного процесса система меняет значения параметров связей, пока не добьётся устойчивости. Системы такого рода принято называть ультраустойчивыми.

  При большом числе изменяемых параметров связей случайный поиск устойчивых режимов может занимать слишком много времени. В таком случае применяются те или иные способы ограничения случайного перебора, например разбиение параметров связей на группы и осуществление перебора лишь внутри одной группы (определяемой по тем или иным признакам). Такого рода системы называют обычно мультиустойчивыми. Большое разнообразие ультраустойчивых и мультиустойчивых систем дает биология. Примером может служить система регулирования температуры крови у человека и теплокровных животных.

  Задача группировки внешних воздействий, необходимая для успешного выбора способа самонастройки в мультиустойчивых системах, входит в число задач узнавания, или, иначе, задач распознавания образов . Для определения типа поведения (способа управления) у человека особую роль играют зрительные и звуковые образы. Возможность их распознавания и объединения в те или иные классы позволяет человеку создавать абстрактные понятия, являющиеся непременным условием сознательного познания действительности и началом абстрактного мышления. Абстрактное мышление позволяет создавать в управляющей системе (в данном случае в человеческом мозге) модели различных процессов, осуществлять с их помощью экстраполяцию действительности и определять свои действия на основе такой экстраполяции.

  Таким образом, на высших уровнях иерархии управляющих систем задачи управления оказываются тесно переплетенными с задачами познания окружающей действительности. В чистом виде эти задачи проявляются в абстрактных познающих системах, также являющихся одним из классов кибернетических систем.

  Существенное место в К. занимает надёжности теория кибернетических систем. Её задачей является разработка методов построения систем, обеспечивающих правильное функционирование систем при выходе из строя части их элементов, разрыве тех или иных связей и др. возможных случайных сбоях или неисправностях.

  Методы кибернетики. Имея в качестве основного объекта исследования кибернетические системы, К. использует для их изучения три принципиально различных метода. Два из них — математико-аналитический и экспериментальный — широко применяются и в др. науках. Сущность первого состоит в описании изучаемого объекта в рамках того или иного математического аппарата (например, в виде системы уравнений) и последующего извлечения различных следствий из этого описания путем математической дедукции (например, путем решения соответствующей системы уравнений). Сущность второго метода состоит в проведении различных экспериментов либо с самим объектом, либо с его реальной физической моделью. В случае уникальности исследуемого объекта и невозможности существенного влияния на него (как, например, в случае Солнечной системы или процесса биологической эволюции) активный эксперимент переходит в пассивное наблюдение.

  Одним из важнейших достижений К. является разработка и широкое использование нового метода исследования, получившего название математического (машинного) эксперимента, или математического моделирования. Смысл его состоит в том, что эксперименты производятся не с реальной физической моделью изучаемого объекта, а с его описанием. Описание объекта вместе с программами, реализующими изменения характеристик объекта в соответствии с этим описанием, помещается в память ЭВМ, после чего становится возможным проводить с объектом различные эксперименты: регистрировать его поведение в тех или иных условиях, менять те или иные элементы описания и тому подобное. Огромное быстродействие современных ЭВМ зачастую позволяет моделировать многие процессы в более быстром темпе, чем они происходят в действительности.

  Первым этапом математического моделирования  является разбиение изучаемой системы на отдельные блоки и элементы и установление связей между ними. Эту задачу решает так называемый системный анализ. В зависимости от целей исследования глубина и способ такого разбиения могут варьироваться. В этом смысле системный анализ представляет собой скорее искусство, чем точную науку, ибо при анализе действительно сложных систем приходится априори отбрасывать несущественные (с точки зрения поставленной цели) детали и связи.

  После разбиения системы на части и характеристики их теми или иными множествами параметров (количественных или качественных) для установления связи между ними привлекают обычно представителей различных наук. Так, при системном анализе человеческого организма типичные связи имеют следующую форму: «При переходе органа А из состояния k1 в состояние k2 и сохранении органа В в состоянии М орган С через N месяцев с вероятностью р перейдёт из состояния n1 в состояние n2 ». В зависимости от вида органов, к которым относится указанное высказывание, оно может быть сделано эндокринологом, кардиологом, терапевтом и др. специалистами. В результате их совместной работы возникает комплексное описание организма, представляющее искомую математическую модель.

Перейти на страницу:
Комментариев (0)
название