Большая Советская Энциклопедия (КА)
Большая Советская Энциклопедия (КА) читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Классификация картографических проекций по характеру искажений. В равноугольных (конформных) К. п. масштаб зависит только от положения точки и не зависит от направления. Эллипсы искажений вырождаются в окружности. Примеры — проекция Меркатор, стереографическая проекция .
В равновеликих (эквивалентных) К. п. сохраняются площади; точнее, площади фигур на картах, составленных в таких проекциях, пропорциональны площадям соответствующих фигур в натуре, причём коэффициент пропорциональности — величина, обратная квадрату главного масштаба карты. Эллипсы искажений всегда имеют одинаковую площадь, различаясь формой и ориентировкой.
Произвольные К. п. не относятся ни к равноугольным, ни к равновеликим. Из них выделяют равнопромежуточные, в которых один из главных масштабов равен единице, и ортодромические, в которых большие круги шара (ортодромы) изображаются прямыми.
При изображении сферы на плоскости свойства равноугольности, равновеликости, равнопромежуточности и ортодромичности несовместимы. Для показа искажений в разных местах изображаемой области применяют: а) эллипсы искажений, построенные в разных местах сетки или эскиза карты (рис. 3 ); б) изоколы, т. е. линии равного значения искажений (на рис. 8в см. изоколы наибольшего искажения углов со и изоколы масштаба площадей р ); в) изображения в некоторых местах карты некоторых сферических линий, обычно ортодромий (О) и локсодромий (Л), см. рис. 3а , 3б и др.
Классификация нормальных картографических проекций по виду изображений меридианов и параллелей, являющаяся результатом исторического развития теории К. п., объемлет большинство известных проекций. В ней сохранились наименования, связанные с геометрическим методом получения проекций, однако рассматриваемые их группы теперь определяют аналитически.
Цилиндрические проекции (рис. 3 ) — проекции, в которых меридианы изображаются равноотстоящими параллельными прямыми, а параллели — прямыми, перпендикулярными к изображениям меридианов. Выгодны для изображения территорий, вытянутых вдоль экватора или какие-либо параллели. В навигации используется проекция Меркатора — равноугольная цилиндрическая проекция. Проекция Гаусса — Крюгера — равноугольная поперечно-цилиндрическая К. п. — применяется при составлении топографических карт и обработке триангуляций.
Конические проекции (рис. 4 ) — проекции, в которых параллели изображаются концентрическими окружностями, меридианы — ортогональными им прямыми. В этих проекциях искажения не зависят от долготы. Особо пригодны для территорий, вытянутых вдоль параллелей. Карты всей территории СССР часто составляются в равноугольных и равнопромежуточных конических проекциях. Используются также как геодезические проекции .
Азимутальные проекции (рис. 5 ) — проекции, в которых параллели — концентрические окружности, меридианы — их радиусы, при этом углы между последними равны соответствующим разностям долгот. Частным случаем азимутальных проекций являются перспективные проекции.
Псевдоконические проекции (рис. 6 ) — проекции, в которых параллели изображаются концентрическими окружностями, средний меридиан — прямой линией, остальные меридианы — кривыми. Часто применяется равновеликая псевдоконическая проекция Бонна; в ней с 1847 составлялась трёхвёрстная (1: 126 000) карта Европейской части России.
Псевдоцилиндрические проекции (рис. 8 ) — проекции, в которых параллели изображаются параллельными прямыми, средний меридиан — прямой линией, перпендикулярной этим прямым и являющейся осью симметрии проекций, остальные меридианы — кривыми.
Поликонические проекции (рис. 9 ) — проекции, в которых параллели изображаются окружностями с центрами, расположенными на одной прямой, изображающей средний меридиан. При построении конкретных поликонических проекций ставятся дополнительные условия. Одна из поликонических проекций рекомендована для международной (1: 1 000 000) карты.
Существует много проекций, не относящихся к указанным видам. Цилиндрические, конические и азимутальные проекции, называемые простейшими, часто относят к круговым проекциям в широком смысле, выделяя из них круговые проекции в узком смысле — проекции, в которых все меридианы и параллели изображаются окружностями, например конформные проекции Лагранжа, проекция Гринтена и др.
Использование и выбор картографических проекций зависят главным образом от назначения карты и её масштаба, которыми часто обусловливается характер допускаемых искажений в избираемой К. п. Карты крупных и средних масштабов, предназначенные для решения метрических задач, обычно составляют в равноугольных проекциях, а карты мелких масштабов, используемые для общих обозрений и определения соотношения площадей каких-либо территорий — в равновеликих. При этом возможно некоторое нарушение определяющих условий этих проекций (w º 0 или р º 1 ), не приводящее к ощутимым погрешностям, т. е. допустим выбор произвольных проекций, из которых чаще применяют проекции равнопромежуточные по меридианам. К последним прибегают и тогда, когда назначением карты вообще не предусмотрено сохранение углов или площадей. При выборе К. п. начинают с простейших, затем переходят к более сложным проекциям, даже, возможно, модифицируя их. Если ни одна из известных К. п. не удовлетворяет требованиям, предъявляемым к составляемой карте со стороны её назначения, то изыскивают новую, наиболее подходящую К. п., пытаясь (насколько это возможно) уменьшить искажения в ней. Проблема построения наивыгоднейших К. п., в которых искажения в каком-либо смысле сведены до минимума, полностью ещё не решена.
К. п. используются также в навигации, астрономии, кристаллографии и др.; их изыскивают для целей картографирования Луны, планет и др. небесных тел.
Преобразование проекций. Рассматривая две К. п., заданные соответствующими системами уравнений: x = f1 (j, l) , y = f2 (j, l) и X = g1 (j, l) , Y = g2 (j, l) , можно, исключая из этих уравнении j и l, установить переход от одной из них к другой:
Х = F1 (x, у) , Y = F2 (x, у) .
Эти формулы при конкретизации вида функций F1 , F2 , во-первых, дают общий метод получения так называемых производных проекций; во-вторых, составляют теоретическую основу всевозможных способов технических приёмов составления карт (см. Географические карты ). Например, аффинные и дробно-линейные преобразования осуществляются при помощи картографических трансформаторов . Однако более общие преобразования требуют применения новой, в частности электронной, техники. Задача создания совершенных трансформаторов К. п. — актуальная проблема современной картографии.
Лит.: Витковский В., Картография. (Теория картографических проекций), СПБ. 1907; Каврайский В. В., Математическая картография, М. — Л., 1934; его же, Избр. труды, т. 2, в. 1—3, [М.], 1958—60; Урмаев Н. А., Математическая картография, М., 1941; его же, Методы изыскания новых картографических проекций, М., 1947; Граур А. В., Математическая картография, 2 изд., Л., 1956; Гинзбург Г. А., Картографические проекции, М., 1951; Мещеряков Г. А., Теоретические основы математической картографии, М., 1968.
Г. А. Мещеряков.
4б. Конические проекции. Равнопромежуточная.
Рис. 8б. Псевдоцилиндрические проекции. Равновеликая синусоидальная проекция В. В. Каврайского.
Рис. 9а. Поликонические проекции. Простая.