-->

Большая Советская Энциклопедия (МА)

На нашем литературном портале можно бесплатно читать книгу Большая Советская Энциклопедия (МА), Большая Советская Энциклопедия . "БСЭ"-- . Жанр: Энциклопедии. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Большая Советская Энциклопедия (МА)
Название: Большая Советская Энциклопедия (МА)
Дата добавления: 15 январь 2020
Количество просмотров: 87
Читать онлайн

Большая Советская Энциклопедия (МА) читать книгу онлайн

Большая Советская Энциклопедия (МА) - читать бесплатно онлайн , автор Большая Советская Энциклопедия . "БСЭ"

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

  Например, в первом столбце таблицы 1а даны результаты измерения 200 диаметров деталей, группированные по интервалам длиной 0,05 мм . Основная выборка соответствует нормальному ходу технологического процесса, 1-я, 2-я и 3-я выборки сделаны через некоторые промежутки времени для проверки устойчивости этого нормального хода производства. В таблице 1б результаты измерения деталей основной выборки даны при группировке по интервалам длиной 0,25 мм .

  Обычно группировка по 10—20 интервалам, в каждый из которых попадает не более 15—20 % значений xi , оказывается достаточной для довольно полного выявления всех существенных свойств распределения и надёжного вычисления по групповым численностям основных характеристик распределения (см. о них ниже). Составленная по таким группированным данным гистограмма наглядно изображает распределение. Гистограмма, составленная на основе группировки с маленькими интервалами, обычно многовершинная и не отражает наглядно существенных свойств распределения.

  В качестве примера на рис. 1 дана гистограмма распределения 200 диаметров, соответствующая данным первого столбца таблицы 1а, а на рис. 3 — гистограмма того же распределения (соответствующая таблица не приводится ввиду её громоздкости) при интервале 0,01 мм . С другой стороны, группировка по слишком крупным интервалам может привести к потере ясного представления о характере распределения и к грубым ошибкам при вычислении среднего и других характеристик распределения (см. таблицу 1б и соответствующую гистограмму на рис. 2 ).

  В пределах М. с. вопрос об интервалах группировки может быть рассмотрен только с формальной стороны: полноты математического описания распределения, точности вычисления средних по сгруппированным данным и так далее. О группировке, имеющей целью выделить качественно различные группы в изучаемой совокупности, см. Статистические группировки .

  При изучении совместного распределения двух признаков пользуются таблицами с двумя входами. Примером совместного распределения двух качеств, признаков может служить таблица 2а. В общем случае, когда по признаку А материал разбит на классы A1 , A2 , ..., Ar , а по признаку В — на классы B1 , B2 , ..., Bs , таблица состоит из численностей nij объектов, принадлежащих одновременно классам Ai и Bj ). Суммируя их по формулам

 

Большая Советская Энциклопедия (МА) - i-images-139096421.png
,
Большая Советская Энциклопедия (МА) - i-images-143459716.png
,

получают численности самих классов Ai и Bj ; очевидно, что

  

Большая Советская Энциклопедия (МА) - i-images-149980209.png
,

где n — численность всей изучаемой совокупности. В зависимости от целей дальнейшего исследования вычисляют те или иные из относительных частот

  hij = nij / n , hi . = ni . / n , h.j = n..j / n , hi(j) = nij / n.j , h(i)j = nij / ni . .

  Например, при изучении влияния вдыхания сыворотки на заболевание гриппом по таблице 2а естественно вычислить относительные частоты, данные в таблице 2б.

Таблица 2а. — Распределение заболевших и не заболевших гриппом среди работников Центрального универмага в Москве, вдыхавших и не вдыхавших противогриппозную сыворотку (1939)

Не заболевшие Заболевшие Всего
Не вдыхавшие 1675 150 1825
Вдыхавшие 497 4 501
Всего 2172 154 2326

Таблица 2б. — Относительные частоты (соответствующие данным таблицы 2а)

Не заболевшие Заболевшие Всего
Не вдыхавшие 0,918 0,082 1,000
Вдыхавшие 0,992 0,008 1,000

  Пример таблицы для совместного распределения двух количеств, признаков см. в статье Корреляция . Таблица 1а служит примером смешанного случая: материал группируется по одному качеств, признаку (принадлежность к основной выборке, произведённой для определения среднего уровня производственного процесса, и к трём выборкам, произведённым в различные моменты времени для проверки сохранения этого нормального среднего уровня) и по одному количеств, признаку (диаметр деталей).

  Простейшими сводными характеристиками распределения одного количественного признака являются среднее

 

Большая Советская Энциклопедия (МА) - i-images-146977464.png
,

и среднее квадратичное отклонение

 

Большая Советская Энциклопедия (МА) - i-images-109114014.png
,

где

 

Большая Советская Энциклопедия (МА) - i-images-139874064.png

При вычислении

Большая Советская Энциклопедия (МА) - i-images-194068434.png
, S2 и D по группированным данным пользуются формулами

 

Большая Советская Энциклопедия (МА) - i-images-188258228.png
,

 

Большая Советская Энциклопедия (МА) - i-images-194297041.png

или

 

Большая Советская Энциклопедия (МА) - i-images-149014466.png
,

где r — число интервалов группировки, ak — их середины (в случае таблицы 1а — 13,07; 13,12; 13,17; 13,22 и т. д.). Если материал сгруппирован по слишком крупным интервалам, то такой подсчёт даёт слишком грубые результаты. Иногда в таких случаях полезно прибегать к специальным поправкам на группировку. Однако эти поправки имеет смысл вводить лишь при условии выполнения определённых вероятностных предположений.

  О совместных распределениях двух и большего числа признаков см. Корреляция , Корреляционный анализ , Регрессия , Регрессионный анализ .

  Связь статистических распределений с вероятностными. Оценка параметров.

  Проверка вероятностных гипотез. Выше были изложены лишь некоторые избранные простейшие приёмы статистического описания, представляющего собой довольно обширную дисциплину с хорошо разработанной системой понятий и техникой вычислений. Приёмы статистического описания интересны, однако не сами по себе, а в качестве средства для получения из статистического материала выводов о закономерностях, которым подчиняются изучаемые явления, и о причинах, приводящих в каждом отд. случае к тем или иным наблюдённым статистическим распределениям.

  Например, данные, приведённые в таблице 2а, естественно связать с такой теоретической схемой. Заболевание гриппом каждого отдельного работника универмага следует считать случайным событием, так как общие условия работы и жизни обследованных работников универмага могут определять не сам факт заболевания такого-то и такого-то работника, а лишь некоторую вероятность заболевания. Вероятности заболевания для вдыхавших сыворотку (p1 ) и для не вдыхавших (p ), судя по статистическим данным, различны: эти данные дают основания предполагать, что p1 существенно меньше p . Перед М. с. возникает задача: по наблюдённым частотам h1 = 4/501 » 0,008 и h = 150/1825 » 0,082 оценить вероятности p1 и p0 и проверить, достаточен ли статистический материал для того, чтобы считать установленным, что p1 < p (то есть что вдыхание сыворотки действительно уменьшает вероятность заболевания). Утвердительный ответ на поставленный вопрос в случае данных таблицы 2а достаточно убедителен и без тонких средств М. с. Но в более сомнительных случаях необходимо прибегать к разработанным М. с. специальным критериям.

Перейти на страницу:
Комментариев (0)
название