Большая Советская Энциклопедия (ДО)
Большая Советская Энциклопедия (ДО) читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Различают также первоначальные и производные Д. в зависимости от того, установлены ли соответствующие фактические данные из источника, непосредственно воспринявшего доказываемое обстоятельство, или из источника, отделённого от этого обстоятельства промежуточными звеньями. Например, сведения, содержащиеся в показаниях очевидца, или признаки, зафиксированные в следе обуви, обнаруженном на месте происшествия, — первоначальные Д. Показания, данные лицом со слов очевидца, признаки, отображённые в копии следа (например, в гипсовой отливке, изготовленной со следа обуви), — производные Д.
В целях собирания и проверки Д. следователь, лицо, производящее дознание, прокурор, суд вправе вызывать для дачи показаний любых лиц, назначать экспертизы, производить осмотры, обыски, выемки и другие предусмотренные законом действия, вправе требовать производства ревизий, представления необходимых документов. Обвиняемый, подозреваемый, потерпевший, защитник и др. участники процесса, а равно любой гражданин, представитель общественности, учреждение вправе указать местонахождение известных им Д., а также непосредственно представить такие Д. — предметы и документы (УПК РСФСР, ст. 70). В гражданском процессе Д. представляются сторонами и др. лицами, участвующими в деле, а также собираются судом по своей инициативе или ходатайству участников процесса. До судебного разбирательства некоторые Д. могут быть собраны судьёй в порядке обеспечения — если существует опасность их утраты (ГПК РСФСР, ст. 49).
Лит.: Теория доказательств в советском уголовном процессе. Часть общая, М., 1966.
Г. М. Миньковский.
Доказательство
Доказа'тельство в логике, процесс (метод) установления истины, обоснование истинности суждения. В соответствии с различными возможными аспектами и уровнями рассмотрения и употребления понятий «истина» («истинность») и «обоснование» термин «Д.» допускает ряд пониманий, отличающихся друг от друга по степеням общности и определённости. Однако во всех модификациях понятия Д. отчётливо прослеживаются две противоположные (но связанные между собой) тенденции. Первая обусловлена относительностью и содержательным характером понятия истины, поскольку оно означает соответствие, более или менее точное и полное, некоторой части реальной действительности. Вторая — связана с тем, что Д. (именно Д., а не просто довод в пользу рассматриваемого утверждения) должно гарантировать истинность тезиса — именно в этом состоит специфика понятия Д., выделяющая его из более широкого класса процедур, которые естественнее называть подтверждениями тезисов и которые могут обладать большей или меньшей степенью убедительности. Иначе говоря, понятие Д. должно служить полным подтверждением истинности доказываемого предложения, а потому носить дедуктивный (см. Дедукция) характер; отсюда тенденция ко всё большей формализации понятия Д. Т. о., в понятии Д. заключено глубокое противоречие: понятие это по-настоящему нужно для решения задач, в принципе не допускающих полного, исчерпывающего, окончательного решения; удаётся же довести это понятие до идеала полной определённости лишь для тех ситуаций, где решение, в некотором смысле, заранее предопределено и заключается уже в самой постановке задачи — при Д. так называемых логически истинных суждений, для которых лишь и удаётся провести полностью формализованные (и тем самым не оставляющие никакой неопределённости и недоговорённости) Д.
Противопоставление содержательных и формальных аспектов понятия «Д.» проявляется прежде всего в различии широкого и узкого понимания этого термина.
Д. в широком смысле — это любая процедура установления истинности какого-либо суждения (называется тезисом, или заключением, данного Д.): как при помощи некоторых логических рассуждений, так и посредством чувственного восприятия некоторых физических предметов и явлений, а также ссылок (указаний или упоминаний) на такие восприятия. Именно такой характер имеют Д. в юридической практике, где термин «Д.» применяют к такого рода единичным указаниями даже для наименования самих указываемых предметов — отсюда выражения «предъявить Д. (улику)», «вещественное Д.». Таковы и обоснования большей части утверждений гуманитарных наук, а в ещё более отчётливой форме — эмпирические (опытные: экспериментальные или основанные на данных наблюдений) Д. в естественных науках. Хотя все такие Д. (если не считать Д. некоторых единичных фактов, сводящихся к непосредственному умозаключению из однократного «предъявления улики») включают в качестве составных частей дедуктивные фрагменты — умозаключения, связывающие ссылки на опыт с доказываемым (и промежуточными) тезисом, тем не менее все эти Д. можно считать индуктивными: в них имеет место переход от частных посылок к общим заключениям (индукция), совершаемый (чаще всего в неявной форме) по правилам индуктивной логики.
Д. в узком смысле слова, характерные для дедуктивных наук (логики, математики и построенных по их образцу и на их основе разделов теоретической физики и теоретической кибернетики), представляют собой цепочки умозаключений (правильных), ведущих от истинных посылок (исходных для данного Д. суждений) к доказываемым (заключительным) тезисам. Посылки Д. также именуются его основаниями, или аргументами, или доводами; термины эти, однако, не менее часто применяются для обозначения промежуточных переходов от посылок к заключению или всякого рода пояснений (комментариев), сопровождающих такие переходы в подобных Д. Истинность посылок не должна обосновываться в самом Д., а должна каким-либо образом устанавливаться заранее. Последовательное развитие этой традиционной (идущей от Аристотеля) концепции Д., связанное с аксиоматическим методом, потребовало (в конце 19 в.) существенного её уточнения и даже пересмотра. Если принятие аксиом в качестве истинных предложений ещё согласовывалось с классическими представлениями (достаточно было, казалось, потребовать их эмпирического обоснования), то открытие возможности построения различных аксиоматических систем (например, неевклидовых геометрий), пригодных, по крайней мере в принципе, для описания одной и той же физической реальности, заставило отбросить представление об аксиомах и как об «истинах самоочевидных», и как об эмпирических истинах. Такое представление (идущее ещё от греческой науки) противоречило, как оказалось, возможности принимать в качестве аксиом различных конкретных геометрических систем (но, конечно, не одной и той же системы) утверждения, являющиеся отрицаниями друг друга, и открывшейся в связи с этим возможности класть в основу научных теорий (а тем самым — и в качестве посылок Д.) предложения, вопрос об истинности которых не только не предопределён с самого начала, но может даже и не ставиться. Иначе говоря, обнаружилась относительность противопоставления понятий вывода (из гипотез) и Д. — ведь аксиомы (независимо от их гипотетической «истинности» или «ложности») это и есть гипотезы, на которых основывается Д.
Но этот пересмотр понятия Д., произведённый на рубеже 19 и 20 вв. Д. Гильбертом, не был до конца последовательным. В связи с обострившимися проблемами непротиворечивости научных теорий (уверенность в которой уже не могла больше базироваться на уверенности в истинности исходных положений теории), Гильберт выдвинул программу формализации Д. дедуктивных теорий, предполагающую не только явное указание всех исходных понятий и исходных предложений (аксиом) каждой данной теории, но и такое же явное указание всех используемых в выводах (в частности, в Д.) этой теории логических средств. При такой постановке вопроса проблема убедительности (правильности) Д. получает (впервые!) совершенно объективный характер. Д. (точнее, формальное Д.) рассматривается просто как «строчка формул», каждая из которых есть либо аксиома (т. е. принадлежит к некоторому заранее выделенному списку «отмеченных» формул), либо непосредственно следует по одному из правил вывода (также точно перечисленных) из предыдущих формул строчки. Заключение данного Д. — это просто его последняя формула (в частности, Д. любой аксиомы состоит всего из одной формулы — из неё самой). При такой трактовке рассматриваемая научная теория перестаёт быть теорией в привычном смысле: она оказывается представленной в виде исчисления, или формальной системы, состоящей из формул, получающихся из формул некоторого исходного запаса (аксиом) посредством чисто «механического» применения правил вывода (применение которых, равно как и проверка правильности этого применения, не предполагает никакого «содержательного» их понимания). Формула, для которой существует формальное Д., называется доказуемой формулой, или формальной теоремой.