-->

Большая Советская Энциклопедия (ИМ)

На нашем литературном портале можно бесплатно читать книгу Большая Советская Энциклопедия (ИМ), Большая Советская Энциклопедия . "БСЭ"-- . Жанр: Энциклопедии. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Большая Советская Энциклопедия (ИМ)
Название: Большая Советская Энциклопедия (ИМ)
Дата добавления: 15 январь 2020
Количество просмотров: 74
Читать онлайн

Большая Советская Энциклопедия (ИМ) читать книгу онлайн

Большая Советская Энциклопедия (ИМ) - читать бесплатно онлайн , автор Большая Советская Энциклопедия . "БСЭ"

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

  Для присоединения нагрузки к импульсным источникам сильных токов используют тиратроны, (при токе до 103—104а и напряжении ~ 20—30 кв), разрядники с повышенным и атмосферным давлением (токи до 106а и напряжения до 105в), вакуумные разрядники с непрерывной откачкой (токи до 106а, напряжения до 10—20 кв) и запаянные (токи до 103а и напряжения до 105в). Применяются также разрядники с твёрдым диэлектриком, заменяемым после каждого разряда (токи ~ 106а, напряжения ~ 104в). Для согласования ёмкостных и индуктивных накопителей с нагрузкой применяются импульсные трансформаторы. Измерение импульсных токов проводится с помощью шунтов или измерительных трансформаторов (пояса Роговского) с интегрирующими цепями. Для этой же цели применяются устройства, использующие явление вращения плоскости поляризации (угол поворота плоскости поляризации пропорционален напряжённости магнитного поля, создаваемого измеряемым током).

  Лит.: Техника высоких напряжений, под ред. Л. И. Сиротинского, ч. 1, М., 1951; Гончаренко Г. М., Жаков Е. М., Дмоховская Л. Ф., Испытательные установки и измерительные устройства в лабораториях высокого напряжения, М., 1966; Фрюнгель Ф., Импульсная техника. Генерирование и применение разрядов конденсаторов, пер. с нем., М.—Л., 1965; Техника больших импульсных токов и магнитных полей, под ред. В. С. Комелькова, М., 1970; Месяц Г. А., Насибов А. С., Кремнев В. В., Формирование наносекундных импульсов высокого напряжения, М., 1970; Физика быстропротекающих процессов, пер. с нем., под ред. Н. А. Златина, т. 1, М., 1971.

  И. П. Кужекин.

Большая Советская Энциклопедия (ИМ) - i008-pictures-001-293662659.jpg

Рис. 4. Спиральный генератор.

Большая Советская Энциклопедия (ИМ) - i009-001-212040641.jpg

Рис. 2. Схема кабельного генератора наносекундных импульсов высокого напряжения; К — отрезки коаксиального кабеля; П — искровой промежуток; О — нагрузка.

Большая Советская Энциклопедия (ИМ) - i009-001-238138052.jpg

Рис. 1. Схема генератора импульсных напряжений (ГИН, или схема Аркадьева — Маркса): ПН — источник постоянного напряжения; С — конденсаторы; R — зарядные сопротивления; Rд — демпфирующие сопротивления: Rp — разрядное сопротивление; П — искровые промежутки; О — объект испытания.

Большая Советская Энциклопедия (ИМ) - i010-001-284079045.jpg

Рис. 5. Амплитуды и длительности токов, получаемых от различных импульсных источников тока: I — взрывные генераторы; II — ёмкостные накопители энергии; III — индуктивные накопители: IV — импульсные аккумуляторы; V — контур Горева; VI — ударные генераторы.

Большая Советская Энциклопедия (ИМ) - i010-001-284786407.jpg

Рис. 3. Схема генератора Блюмлейна: ИП — источник постоянного напряжения или ГИН; Л — трёхполосная полосковая линия.

Импульсное управление электроприводом

И'мпульсное управле'ние электроприво'дом, метод управления частотой вращения или вращающим моментом электродвигателей, основанный на периодическом изменении параметров цепей двигателя или схемы его присоединения к источнику энергии. Например, при замкнутом контакте импульсного элемента (ИЭ) (см. рис.) цепь якоря Я подключена к источнику Uп и двигатель разгоняется. При разомкнутом контакте двигатель тормозится статическим моментом нагрузки Mc. Среднее значение частоты вращения n определяется относительным временем t1 включения ИЭ и нагрузкой Mc, т. е., меняя продолжительность импульса питающего напряжения, можно регулировать частоту вращения в широких пределах. В качестве коммутирующих ИЭ применяются реле, контакторы, магнитные усилители, ионные приборы, транзисторы. Подобные схемы отличаются низкими кпд и коэффициентом использования двигателя при глубоком регулировании частоты вращения.

  Для И. у. э. характерны простота и надёжность, а схема управления на транзисторах отличается, кроме того, высокой экономичностью, малыми габаритами и массой, поэтому такие схемы широко применяются в самолётных электроприводах и металлообрабатывающих станках.

  Лит.: Твердин Л. М., Система УРВ-Д с импульсным регулированием скорости вращения, в кн.: Автоматизированный электропривод, в. 2, М., 1960; Нагорский В. Д., Управление двигателями постоянного тока с помощью импульсов повышенной частоты, «Изв. АН СССР. Отделение технических наук», 1960, № 2.

Большая Советская Энциклопедия (ИМ) - i009-001-205889514.jpg

Импульсное регулирование частоты вращения электродвигателя: а — схема включения электродвигателя и временная диаграмма его работы; б — механические характеристики электропривода; ИЭ — импульсный элемент управления; Я — якорь электродвигателя; Uп — источник электроэнергии; Mc — нагрузка: uя — напряжение на якоре; iя — ток в якоре; n — частота врашения.

Импульсные источники света

И'мпульсные исто'чники све'та, предназначаются для получения одиночных или периодически повторяющихся световых вспышек длительностью от долей мксек до нескольких десятков мсек. По способу преобразования различных видов энергии в световое излучение И. и. с. подразделяют на 2 типа. К первому относятся приборы, использующие световое излучение низкотемпературной плазмы, получаемой с помощью конденсированного искрового разряда в газах, взрывающихся проволочек, пинч-эффекта и др. Действие источников второго типа основано на кратковременном возбуждении люминофора в результате прохождения через него электрического тока или при облучении пучком электронов. И. и. с. могут служить оптические квантовые генераторы (импульсные лазеры). Наибольшее применение в качестве И. и. с. получили импульсные лампы (кпд преобразования электрической энергии в световую до 50—70%), относящиеся к И. и. с. первого типа.

  И. и. с. применяются в автоматике и телемеханике в приборах со световыми каналами управления и передачи информации, в оптической локации и связи, в оптической телефонии, в дальномерах и толщиномерах. Разработаны приборы с И. и. с. для получения отметок времени, фоторегистрации, изготовления клише и др. целей. И. и. с. используются в фотохимии для фотолиза, фотосинтеза и исследования возбуждённых квантовых состояний атомных и молекулярных частиц. Широкое применение И. и. с. всех типов получили для накачки активных сред оптических квантовых генераторов.

  Совершенствование И. и. с. направлено на увеличение интенсивности и кпд излучения в определённых спектральных диапазонах, расширение диапазона управляемости, а также на повышение надёжности и долговечности.

  Лит.: Маршак И. С., Импульсные источники света, М.—Л., 1963; Рохлин Г. Н., Газоразрядные источники света, М.—Л., 1966.

  Б. В. Скворцов.

Импульсный полупроводниковый диод

И'мпульсный полупроводнико'вый дио'д,полупроводниковый диод, вносящий наименьшие искажения в пропускаемые им импульсы. Используется главным образом при работе в режиме переключения электрических цепей.

Импульсный разряд

И'мпульсный разря'д, см. Электрический разряд в газах.

Импульсный реактор

И'мпульсный реа'ктор, ядерный реактор, работающий в импульсном режиме. В отличие от стационарного ядерного реактора, уровень мощности которого постоянен во времени, в И. р. генерируются кратковременные импульсы мощности и, соответственно, потока нейтронов. Длительность импульсов от нескольких мксек до нескольких сек. И. р. позволяет получить большую мощность и интенсивный поток нейтронов в короткие интервалы времени. Такой режим работы выгоден для некоторых исследовательских целей, например для экспериментов, связанных с измерением скорости нейтронов по времени пролёта ими известного расстояния (см. Нейтронная спектроскопия). Возникновение импульса мощности в И. р. происходит за счёт бурного развития ядерной цепной реакции. Для этого в И. р. быстро вводят избыточное количество ядерного топлива или удаляют поглотители нейтронов. Для «гашения» импульса часто удаляют «лишнее» ядерное топливо.

Перейти на страницу:
Комментариев (0)
название