-->

Большая Советская Энциклопедия (КА)

На нашем литературном портале можно бесплатно читать книгу Большая Советская Энциклопедия (КА), Большая Советская Энциклопедия . "БСЭ"-- . Жанр: Энциклопедии. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Большая Советская Энциклопедия (КА)
Название: Большая Советская Энциклопедия (КА)
Дата добавления: 15 январь 2020
Количество просмотров: 80
Читать онлайн

Большая Советская Энциклопедия (КА) читать книгу онлайн

Большая Советская Энциклопедия (КА) - читать бесплатно онлайн , автор Большая Советская Энциклопедия . "БСЭ"

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

  И. Н. Дьяконова.

Капиллярные волны

Капилля'рные во'лны,волны на поверхности жидкости малой длины. В восстановлении равновесного состояния поверхности жидкости при К. в. основную роль играют силы поверхностного натяжения .

Капиллярные явления

Капилля'рные явле'ния, физические явления, обусловленные действием поверхностного натяжения на границе раздела несмешивающихся сред. К К. я. относят обычно явления в жидких средах, вызванные искривлением их поверхности, граничащей с др. жидкостью, газом или собственным паром. Искривление поверхности ведёт к появлению в жидкости дополнительного капиллярного давления Dp , величина которого связана со средней кривизной r поверхности уравнением Лапласа: Dp = p1— p2. = 2s12 /r , где (s12поверхностное натяжение на границе двух сред; p1 и p2 — давления в жидкости 1 и контактирующей с ней среде (фазе ) 2. В случае вогнутой поверхности жидкости (r < 0) давление в ней понижено по сравнению с давлением в соседней фазе: p1 < p2 и Dp < 0. Для выпуклых поверхностей (r > 0) знак Dp меняется на обратный. Капиллярное давление создаётся силами поверхностного натяжения, действующими по касательной к поверхности раздела. Искривление поверхности раздела ведёт к появлению составляющей, направленной внутрь объёма одной из контактирующих фаз. Для плоской поверхности раздела (r = ¥) такая составляющая отсутствует и Dp = 0.

  К. я. охватывают различные случаи равновесия и движения поверхности жидкости под действием межмолекулярных сил и внешних сил (в первую очередь силы тяжести).

  В простейшем случае когда внешние силы отсутствуют или скомпенсированы, поверхность жидкости всегда искривлена. Так, в условиях невесомости ограниченный объём жидкости, не соприкасающейся с др. телами, принимает под действием поверхностного натяжения форму шара. Эта форма отвечает устойчивому равновесию жидкости, поскольку шар обладает минимальной поверхностью при данном объёме, и, следовательно, поверхностная энергия жидкости в этом случае минимальна.

  Форму шара жидкость принимает и в том случае, если она находится в другой, равной по плотности жидкости (действие силы тяжести компенсируется архимедовой выталкивающей силой, см. Архимеда закон ). При нескомпенсированной силе тяжести картина существенно меняется Маловязкая жидкость (например, вода), взятая в достаточном количестве, принимает форму сосуда, в который она налита. Её свободная поверхность оказывается практически плоской, т.к. силы земного притяжения преодолевают действие поверхностного натяжения, стремящегося искривить и сократить поверхность жидкости. Однако по мере уменьшения массы жидкости роль поверхностного натяжения снова становится определяющей: при дроблении жидкости в среде газа или газа в жидкости образуются мелкие капли или пузырьки практически сферической формы (см. Капля ).

  Свойства систем, состоящих из многих мелких капель или пузырьков (эмульсии, жидкие аэрозоли, пены), и условия их образования во многом определяются кривизной поверхности частиц, т. е. К. я. Не меньшую роль К. я. играют и при образовании новой фазы: капелек жидкости при конденсации паров, пузырьков пара при кипении жидкостей, зародышей твёрдой фазы при кристаллизации .

  При контакте жидкости с твёрдыми телами на форму её поверхности существенно влияют явления смачивания , обусловленные взаимодействием молекул жидкости и твёрдого тела. На рис. 1 показан профиль поверхности жидкости, смачивающей стенки сосуда. Смачивание означает, что жидкость сильнее взаимодействует с поверхностью твёрдого тела (капилляра, сосуда), чем находящийся над ней газ. Силы притяжения, действующие между молекулами твёрдого тела и жидкости, заставляют её подниматься по стенке сосуда, что приводит к искривлению примыкающего к стенке участка поверхности. Это создаёт отрицательное (капиллярное) давление, которое в каждой точке искривленной поверхности в точности уравновешивает давление, вызванное подъёмом уровня жидкости. Гидростатическое давление в объёме жидкости при этом изменений не претерпевает.

  Если сближать плоские стенки сосуда таким образом, чтобы зоны искривления начали перекрываться, то образуется вогнутый мениск — полностью искривленная поверхность. В жидкости под мениском капиллярное давление отрицательно, под его действием жидкость всасывается в щель до тех пор, пока вес столба жидкости (высотой h ) не уравновесит действующее капиллярное давление Dp . В состоянии равновесия

(r1r2 ) gh = Dp= 2s12 /r ,

  где r1 и r2 — плотность жидкости 1 и газа 2; g — ускорение свободного падения. Это выражение, известное как формула Д. Жюрена (J. Jurin, 1684—1750), определяет высоту h капиллярного поднятия жидкости, полностью смачивающей стенки капилляра. Жидкость, не смачивающая поверхность, образует выпуклый мениск, что вызывает сё опускание в капилляре ниже уровня свободной поверхности (h < 0).

  Капиллярное впитывание играет существенную роль в водоснабжении растений, передвижении влаги в почвах и др. пористых телах. Капиллярная пропитка различных материалов широко применяется в процессах химической технологии.

  Искривление свободной поверхности жидкости под действием внешних сил обусловливает существование т. н. капиллярных волн («ряби» на поверхности жидкости). К. я. при движении жидких поверхностей раздела рассматривает физико-химическая гидродинамика .

  Движение жидкости в капиллярах может быть вызвано разностью капиллярных давлений, возникающей в результате различной кривизны поверхности жидкости. Поток жидкости направлен в сторону меньшего давления: для смачивающих жидкостей — к мениску с меньшим радиусом кривизны (рис. 2 , а).

  Пониженное, в соответствии с Кельвина уравнением , давление пара над смачивающими менисками является причиной капиллярной конденсации жидкостей в тонких порах.

  Отрицательное капиллярное давление оказывает стягивающее действие на ограничивающие жидкость стенки (рис. 2 , б). Это может приводить к значительной объёмной деформации высокодисперсных систем и пористых тел — капиллярной контракции. Так, например, происходящий при высушивании рост капиллярного давления приводит к значительной усадке материалов.

  Многие свойства дисперсных систем (проницаемость, прочность, поглощение жидкости) в значительной мере обусловлены К. я., т.к. в тонких порах этих тел реализуются высокие капиллярные давления.

  К. я. впервые были открыты и исследованы Леонардо да Винчи (15 в.), затем Б. Паскалем (17 в.) и Д. Жюреном (18 в.) в опытах с капиллярными трубками. Теория К. я. развита в работах П. Лапласа (1806), Т. Юнга (1805), С. Пуассона (1831), Дж. Гиббса (1875) и И. С. Громеки (1879,1886).

  Лит .: Адам Н. К., Физика и химия поверхностей, пер. с англ., М., 1947; Громека И. О., Собр. соч., М., 1952.

  Н. В. Чураев.

Большая Советская Энциклопедия (КА) - i009-001-240704151.jpg

Рис. 1. Капиллярное поднятие жидкости, смачивающей стенки (вода в стеклянном сосуде и капилляре).

Большая Советская Энциклопедия (КА) - i009-001-243290470.jpg

Рис. 2. а — перемещение жидкости в капилляре под действием разности капиллярных давлений (r1 > r2 ); б — стягивающее действие капиллярного давления.

Перейти на страницу:
Комментариев (0)
название