Большая Советская Энциклопедия (КВ)
Большая Советская Энциклопедия (КВ) читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Представим, что всё пространство заполнено такого рода осцилляторами. Вместо того чтобы как-то «пронумеровать» эти осцилляторы, можно просто указывать координаты точек, в которых каждый из них находится, — так осуществляется переход к полю осцилляторов, число степеней свободы которого, очевидно, бесконечно велико.
Описание такого поля можно производить различными методами. Один из них заключается в том, чтобы проследить за каждым из осцилляторов. При этом на первый план выступают величины, называемые локальными, т. е. заданными для каждой из точек пространства (и момента времени), т.к. именно координаты «помечают» выбранный осциллятор. При переходе к квантовому описанию эти локальные классические величины, описывающие поле, заменяются локальными операторами. Уравнения, которые в классической теории описывали динамику поля, превращаются в уравнения для соответствующих операторов. Если осцилляторы не взаимодействуют друг с другом (или с некоторым др. полем), то для такого поля свободных осцилляторов общая картина, несмотря на бесконечное число степеней свободы, получается относительно простой; при наличии же взаимодействий возникают усложнения.
Другой метод описания поля основан на том, что вся совокупность колебаний осцилляторов может быть представлена как набор волн, распространяющихся в рассматриваемом поле. В случае невзаимодействующих осцилляторов волны также оказываются независимыми; каждая из них является носителем энергии, импульса, может обладать определённой поляризацией. При переходе от классического рассмотрения к квантовому, когда движение каждого осциллятора описывается вероятностными квантовыми законами, волны также приобретают вероятностный смысл. Но с каждой такой волной (согласно корпускулярно-волновому дуализму) можно сопоставить частицу, обладающую той же, что и волна, энергией и импульсом (а следовательно, и массой) и имеющую спин (классическим аналогом которого является момент количества движения циркулярно поляризованной волны). Эту «частицу», конечно, нельзя отождествить ни с одним из осцилляторов поля, взятым в отдельности, — она представляет собой результат процесса, захватывающего бесконечно большое число осцилляторов, и описывает некое возбуждение поля. Если осцилляторы не независимы (есть взаимодействия), то это отражается и на «волнах возбуждения» или на соответствующих им «частицах возбуждения» — они также перестают быть независимыми, могут рассеиваться друг на друге, порождаться и исчезать. Изучение поля, т. о., можно свести к рассмотрению квантованных волн (или «частиц») возбуждений. Более того, никаких др. «частиц», кроме «частиц возбуждения», при данном методе описания не возникает, т.к. каждая частица-осциллятор отдельно в нарисованную общую картину квантованного осцилляторного поля не входит.
Рассмотренная «осцилляторная модель» поля имеет в основном иллюстративное значение (хотя, например, она довольно полно объясняет, почему в физике твёрдого тела методы К. т. п. являются эффективным инструментом теоретического исследования). Однако она не только отражает общие важные черты теории, но и позволяет понять возможность различных подходов к проблеме квантового описания полей.
Первый из описанных выше методов ближе к так называемой гейзенберговской картине (или представлению Гейзенберга) квантового поля. Второй — к «представлению взаимодействия», которое обладает преимуществом большей наглядности и поэтому, как правило, будет использоваться в дальнейшем изложении. При этом, конечно, будут рассматриваться различные физические поля, не имеющие механической природы, а не поле механических осцилляторов. Так, рассматривая электромагнитное поле, было бы неправильным искать за электромагнитными волнами какие-то механические колебания: в каждой точке пространства колеблются (т. е. изменяются во времени) напряжённости электрического Е и магнитного Н полей. В гейзенберговской картине описания электромагнитного поля объектами теоретического исследования являются операторы (х) и
(х) (и др. операторы, которые через них выражаются), появляющиеся на месте классических величин. Во втором из рассмотренных методов на первый план выступает задача описания возбуждений электромагнитного поля. Если энергия «частицы возбуждения» равна E, а импульс р, то длина волны l и частота n соответствующей ей волны определяются формулами (1). Носитель этой порции энергии и импульса — квант свободного электромагнитного поля, или фотон. Т. о., рассмотрение свободного электромагнитного поля сводится к рассмотрению фотонов.Исторически квантовая теория электромагнитного поля начала развиваться первой и достигла известной завершённости; поэтому квантовой теории электромагнитных процессов — квантовой электродинамике — отводится в статье основное место. Однако, кроме электромагнитного поля, существуют и др. типы физических полей: мезонные поля различных типов, поля нейтрино и антинейтрино, нуклонные, гиперонные и т.д. Если физическое поле является свободным (т. е. не испытывающим никаких взаимодействий, в том числе и самовоздействия), то его можно рассматривать как совокупность невзаимодействующих квантов этого поля, которые часто просто называют частицами данного поля. При наличии взаимодействий (например, между физическими полями различных типов) независимость квантов утрачивается, а когда взаимодействия начинают играть доминирующую роль в динамике полей, утрачивается и плодотворность самого введения квантов этих полей (по крайней мере, для тех этапов процессов в этих полях, для которых нельзя пренебречь взаимодействием). Квантовая теория таких полей недостаточно разработана и в дальнейшем почти не обсуждается.
5. Квантовая теория поля и релятивистская теория. Описание частиц высоких энергий должно проводиться в рамках релятивистской теории, т. е. в рамках специальной теории относительности Эйнштейна (см. Относительности теория). Эта теория, в частности, устанавливает важное соотношение между энергией E, импульсом р и массой m частицы;
, (2)(с — универсальная постоянная, равная скорости света в пустоте, с = 3×1010см/сек). Из (2) видно, что энергия частицы не может быть меньше mc2. Энергия, конечно, не возникает «из ничего». Поэтому минимальная энергия, необходимая для образования частицы данной массы m (она называется массой покоя), равна mc2.
Если рассматривается система, состоящая из медленных частиц, то их энергия может оказаться недостаточной для образования новых частиц. В такой «нерелятивистской» системе число частиц может оставаться неизменным. Это и обеспечивает возможность применения для её описания квантовой механики.
Всё изложенное выше относится к порождению частиц, имеющих отличную от нуля массу покоя. Но у фотона, например, масса покоя равна нулю, так что для его образования совсем не требуется больших, релятивистских, энергий. Однако и здесь невозможно обойтись без релятивистской теории, что ясно хотя бы из того, что нерелятивистская теория применима лишь при скоростях, много меньших скорости света с, а фотон всегда движется со скоростью с.
Кроме необходимости рассматривать релятивистскую область энергий, есть ещё одна причина важности теории относительности для К. т. п.: в физике элементарных частиц, изучение которых является одной из основных (и ещё не решенных) задач К. т. п., теория относительности играет фундаментальную роль. Это делает развитие релятивистской К. т. п. особенно важным.
Однако и нерелятивистская К. т. п. представляет значительный интерес хотя бы потому, что она успешно используется в физике твёрдого тела.
II.Квантовая электродинамика