-->

Большая Советская Энциклопедия (ПО)

На нашем литературном портале можно бесплатно читать книгу Большая Советская Энциклопедия (ПО), Большая Советская Энциклопедия . "БСЭ"-- . Жанр: Энциклопедии. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Большая Советская Энциклопедия (ПО)
Название: Большая Советская Энциклопедия (ПО)
Дата добавления: 15 январь 2020
Количество просмотров: 85
Читать онлайн

Большая Советская Энциклопедия (ПО) читать книгу онлайн

Большая Советская Энциклопедия (ПО) - читать бесплатно онлайн , автор Большая Советская Энциклопедия . "БСЭ"

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:
Большая Советская Энциклопедия (ПО) - i010-001-279139463.jpg

Рис. 5. Полупроводниковые диоды (внешний вид): 1 — выпрямительный диод; 2 — фотодиод; 3 — СВЧ диод; 4 и 5 — диодные матрицы; 6 — импульсный диод. Корпуса диодов: 1 и 2 — металло-стеклянные; 3 и 4 — металло-керамические; 5 — пластмассовый; 6 — стеклянный.

Большая Советская Энциклопедия (ПО) - i010-001-287787202.jpg

Рис. 1. Структурная схема полупроводникового диода с р — n-переходом: 1 — кристалл; 2 — выводы (токоподводы); 3 — электроды (омические контакты); 4 — плоскость р — n-перехода.

Полупроводниковый лазер

Полупроводнико'вый ла'зер , полупроводниковый квантовый генератор, лазер с полупроводниковым кристаллом в качестве рабочего вещества. В П. л., в отличие от лазеров др. типов, используются излучательные квантовые переходы не между изолированными уровнями энергии атомов, молекул и ионов, а между разрешенными энергетическими зонами кристалла (см. Твёрдое тело ). В П. л. возбуждаются и излучают (коллективно) атомы, слагающие кристаллическую решётку. Это отличие определяет важную особенность П. л. — малые размеры и компактность (объём кристалла ~10-6 —10-2см3 ). В П. л. удаётся получить показатель оптич. усиления до 104 см-1 (см. Усиления оптического показатель ), хотя обычно для возбуждения генерации лазера достаточны и меньшие значения (см. ниже). Другими практически важными особенностями П. л. являются: высокая эффективность преобразования электрической энергии в энергию когерентного излучения (до 30—50%); малая инерционность, обусловливающая широкую полосу частот прямой модуляции (более 109 Ггц ); простота конструкции; возможность перестройки длины волны l излучения и наличие большого числа полупроводников, непрерывно перекрывающих интервал длин волн от 0,32 до 32 мкм.

  Люминесценция в полупроводниках . При рекомбинации электронов проводимости и дырок в полупроводниках освобождается энергия, которая может испускаться в виде квантов излучения (люминесценция ) или передаваться колебаниями кристаллической решётки , т. е. переходить в тепло. Доля излучательных актов рекомбинации у таких полупроводников, как Ge и Si, очень мала, однако в некоторых полупроводниках (например, GaAs, CdS) при очистке и легировании она может приближаться к 100%.

  Для наблюдения люминесценции необходимо применить какой-либо способ возбуждения (накачки) кристалла, т. е. способ генерации избыточных электронно-дырочных пар (светом, быстрыми электронами или электрическим полем). При малой скорости образования избыточных электронно-дырочных пар излучательная рекомбинация носит беспорядочный (спонтанный) характер и используется в нелазерных полупроводниковых источниках света (см. Светоизлучающий диод ). Чтобы получить генерацию когерентного излучения, т. е. лазерный эффект, необходимо создать особое состояние люминесцирующего кристалла — состояние с инверсией населённостей .

  Рекомбинация электронно-дырочной пары может сопровождаться испусканием кванта излучения, близкого по энергии к ширине запрещенной зоны DE полупроводника (рис. 1 , а); при этом длина волны l » hc/ DE , где h — Планка постоянная , с — скорость света.

  Инверсия населённостей в полупроводниках . Оптическое квантовое усиление в полупроводнике может наблюдаться в том случае, если зона проводимости вблизи её дна Ec заполнена электронами в большей степени, чем валентная зона вблизи её потолка Eu . Преобладание числа переходов с испусканием квантов над переходами с их поглощением обеспечивается тем, что на верхних уровнях находится больше электронов, чем на нижних, тогда как вероятности вынужденных переходов в обоих направлениях одинаковы. Заполнение зон принято описывать с помощью т. н. квазиуровней Ферми, отделяющих состояния с вероятностью заполнения уровней больше 1 /2 от состояний с вероятностью заполнения меньше 1 /2 . Если

Большая Советская Энциклопедия (ПО) - i-images-128859754.png
 и
Большая Советская Энциклопедия (ПО) - i-images-166772835.png
 — квазиуровни Ферми для электронов и дырок, то условие инверсии населённостей относительно переходов с энергией hn (где n — частота излучения) выражается формулой:

Большая Советская Энциклопедия (ПО) - i-images-142386132.png
Большая Советская Энциклопедия (ПО) - i-images-103835395.png
> hn.

  Для поддержания такого состояния необходима высокая скорость накачки, восполняющей убыль электронно-дырочных пар вследствие излучательных переходов. Благодаря этим вынужденным переходам поток излучения нарастает (рис. 1 , б), т. е. реализуется оптическое усиление.

  В П. л. применяют следующие методы накачки: 1) инжекция носителей тока через р—n- переход (см. Электронно-дырочный переход ), гетеропереход или контакт металл — полупроводник (инжекционные лазеры); 2) накачка пучком быстрых электронов; 3) оптическая накачка; 4), накачка путём пробоя в электрическом поле. Наибольшее развитие получили П. л. первых двух типов.

  Инжекционные лазеры . Лазер на р—n- переходе представляет собой полупроводниковый диод, у которого две плоскопараллельные поверхности, перпендикулярные р—n -переходу (рис. 2 ), образуют оптический резонатор (коэффициент отражения от граней кристалла ~20—40%). Инверсия населённостей достигается при большой плотности прямого тока через диод (порог генерации соответствует току ~1 кА/см2 , а при пониженной температуре ~ 102 A/см2,рис. 3 ). Для получения достаточно интенсивной инжекции применяют сильно легированные полупроводники.

  Инжекционные лазеры на гетеропереходе (появились в 1968) представляют собой, например, двусторонние гетероструктуры (рис. 4 ). Активный слой (GaAs) заключён между двумя полупроводниковыми гетеропереходами , один из которых (типа р—n ) служит для инжекции электронов, а второй (типа р—р ) отражает инжектированные электроны, препятствуя их диффузионному растеканию из активного слоя (электронное ограничение). При одинаковом токе накачки в активном слое гетероструктуры достигается большая концентрация электронно-дырочных пар и, следовательно, большее оптическое усиление, чем в П. л. На р—n -переходах. Другое преимущество гетероструктуры состоит в том, что образованный активным слоем диэлектрический волновод удерживает излучение, распространяющееся вдоль структуры, в пределах активного слоя (оптическое ограничение), благодаря чему оптическое усиление используется наиболее эффективно. Для П. л. на гетеропереходе необходимая плотность тока при Т = 300 К более чем в 10 раз ниже, чем у П. л. на р—n -переходе, что позволяет осуществить непрерывный режим генерации при температуре до 350 К.

  П. л. инжекционного типа (рис. 5 ) работают в импульсном режиме с выходной мощностью до 100 вт и в непрерывном режиме с мощностью более 10 вт (GaAs) в ближней инфракрасной (ИК) области (l = 850 нм ) и около 10 мвт (Pbx Sn1-x Te) в средней ИК области (l = 10 мкм ). Недостаток инжекционных лазеров — слабая направленность излучения, обусловленная малыми размерами излучающей области (большая дифракционная расходимость), и относительно широкий спектр генерации по сравнению с газовыми лазерами.

  П. л. с электронной накачкой. При бомбардировке полупроводника быстрыми электронами с энергией W ~ 103 —106 эв в кристалле рождаются электронно-дырочные пары; количество пар, создаваемое одним электроном, ~W /3DE . Этот способ применим к полупроводникам с любой шириной запрещенной зоны. Выходная мощность П. л. достигает 106вт, что объясняется возможностью накачки большого объёма полупроводника (рис. 6 ). П. л. с электронной накачкой содержит электронный прожектор, фокусирующую систему и полупроводниковый кристалл в форме оптического резонатора, помещенные в вакуумную колбу (рис. 7 ). Техническое достоинство П. л. с электронной накачкой — возможность быстрого перемещения (сканирования) электронного пучка по кристаллу, что даёт дополнительный способ управления излучением. Т. к. заметная часть энергии электронного пучка тратится на разогрев решётки кристалла, то кпд ограничен (~1 /3 ); на каждую электронно-дырочную пару расходуется энергия 3DE , а испускается фотон с энергией ~DE

Перейти на страницу:
Комментариев (0)
название