-->

Большая Советская Энциклопедия (БЕ)

На нашем литературном портале можно бесплатно читать книгу Большая Советская Энциклопедия (БЕ), Большая Советская Энциклопедия . "БСЭ"-- . Жанр: Энциклопедии. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Большая Советская Энциклопедия (БЕ)
Название: Большая Советская Энциклопедия (БЕ)
Дата добавления: 15 январь 2020
Количество просмотров: 132
Читать онлайн

Большая Советская Энциклопедия (БЕ) читать книгу онлайн

Большая Советская Энциклопедия (БЕ) - читать бесплатно онлайн , автор Большая Советская Энциклопедия . "БСЭ"

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

Большая Советская Энциклопедия (БЕ) - i-images-111868068.png

Большая Советская Энциклопедия (БЕ) - i-images-187041565.png

где

Большая Советская Энциклопедия (БЕ) - i-images-163276489.png
 — символ ядра, состоящего из Z протонов и А Z нейтронов.

  Простейшим примером (b- -распада является превращение свободного нейтрона в протон с испусканием электрона и антинейтрино (период полураспада нейтрона » 13 мин ):

Большая Советская Энциклопедия (БЕ) - i-images-103718317.png

Более сложный пример (b- -распада — распад тяжёлого изотопа водорода — трития, состоящего из двух нейтронов (n) и одного протона (p):

Большая Советская Энциклопедия (БЕ) - i-images-127968234.png

Очевидно, что этот процесс сводится к b- -распаду связанного (ядерного) нейтрона. В этом случае b-радиоактивное ядро трития превращается в ядро следующего в периодической таблице элемента — ядро лёгкого изотопа гелия 32 Не.

  Примером b+ -распада может служить распад изотопа углерода 11 С по следующей схеме:

Большая Советская Энциклопедия (БЕ) - i-images-171914884.png

Этот процесс можно представить как распад связанного протона

Большая Советская Энциклопедия (БЕ) - i-images-141912531.png

В этом случае ядро углерода превращается в ядро предшествующего ему в периодической таблице элемента — бора.

  Превращение протона в нейтрон внутри ядра может происходить и в результате захвата протоном одного из электронов с электронной оболочки атома. Чаще всего происходит захват электрона

Большая Советская Энциклопедия (БЕ) - i-images-105253478.png
 с ближайшей к ядру К-оболочки, т. н. К-захват. При К-захвате, как и при b+ -распаде, образуется изобар, стоящий в периодической системе элементов слева от исходного ядра. Уравнение К-захвата имеет вид:

Большая Советская Энциклопедия (БЕ) - i-images-138881436.png

После захвата К-электрона на освободившееся место переходят электроны с более высоких оболочек; при этом испускается фотон. Т. о., К-захват сопровождается испусканием характеристического рентгеновского излучения. Примером К-захвата может служить реакция, при которой ядро изотопа бериллия захватывает К-электрон и превращается в ядро лития:

Большая Советская Энциклопедия (БЕ) - i-images-113909461.png

  Б.-р. наблюдается как у естественно-радиоактивных, так и у искусственно-радиоактивных изотопов. Для того чтобы ядро было неустойчиво по отношению к одному из типов b-превращения (т. е. могло испытать Б.-р.), сумма масс частиц в левой части уравнения реакции должна быть больше суммы масс продуктов превращения. Поэтому при Б.-р. происходит выделение энергии. Энергию Б.-р. Еb можно вычислить по этой разности масс, пользуясь соотношением Е = mc2, где с — скорость света в вакууме. В случае b-распада

Большая Советская Энциклопедия (БЕ) - i-images-125420682.png

где М — массы нейтральных атомов. В случае b+-распада нейтральный атом теряет один из электронов в своей оболочке, энергия Б.-р. равна:

Большая Советская Энциклопедия (БЕ) - i-images-173731151.png

где me — масса электрона.

  Энергия Б.-р. распределяется между тремя частицами: электроном (или позитроном), антинейтрино (или нейтрино) и ядром; каждая из лёгких частиц может уносить практически любую энергию от 0 до Eb т. е. их энергетические спектры являются сплошными. Лишь при К-захвате нейтрино уносит всегда одну и ту же энергию.

  Итак, при b- -распаде масса исходного атома превышает массу конечного атома, а при b+ -распаде это превышение составляет не менее двух электронных масс.

  Исследование Б.-р. ядер неоднократно ставило учёных перед неожиданными загадками. После открытия радиоактивности явление Б.-р. долгое время рассматривалось как аргумент в пользу наличия в атомных ядрах электронов; это предположение оказалось в явном противоречии с квантовой механикой (см. Ядро атомное ). Затем непостоянство энергии электронов, вылетающих при Б.-р., даже породило у некоторых физиков неверие в закон сохранения энергии, т.к. было известно, что в этом превращении участвуют ядра, находящиеся в состояниях с вполне определённой энергией. Максимальная энергия вылетающих из ядра электронов как раз равна разности энергий начального и конечного ядер. Но в таком случае было непонятно, куда исчезает энергия, если вылетающие электроны несут меньшую энергию. Предположение немецкого учёного В. Паули о существовании новой частицы — нейтрино — спасло не только закон сохранения энергии, но и другой важнейший закон физики — закон сохранения момента количества движения. Поскольку спины (т. е. собственные моменты) нейтрона и протона равны 1 /2 , то для сохранения спина в правой части уравнений Б.-р. может находиться лишь нечётное число частиц со спином 1 /2 . В частности, при b- -распаде свободного нейтрона n ® p + e- + n только появление антинейтрино исключает нарушение закона сохранения момента количества движения.

  Б.-р. имеет место у элементов всех частей периодической системы. Тенденция к b-превращению возникает вследствие наличия у ряда изотопов избытка нейтронов или протонов по сравнению с тем количеством, которое отвечает максимальной устойчивости. Т. о., тенденция к b+ -распаду или К-захвату характерна для нейтронодефицитных изотопов, а тенденция к b- -распаду — для нейтроноизбыточных изотопов. Известно около 1500 b-радиоактивных изотопов всех элементов периодической системы, кроме самых тяжёлых (Z ³ 102).

Энергия Б.-р. ныне известных изотопов лежит в пределах от

Большая Советская Энциклопедия (БЕ) - i-images-184838438.png

периоды полураспада заключены в широком интервале от 1,3 · 10-2сек (12 N) до ~ 2 1013 лет (природный радиоактивный изотоп 180 W).

  В дальнейшем изучение Б.-р. неоднократно приводило физиков к крушению старых представлений. Было установлено, что Б.-р. управляют силы совершенно новой природы. Несмотря на длительный период, прошедший со времени открытия Б.-р., природа взаимодействия, обусловливающего Б.-р., исследована далеко не полностью. Это взаимодействие назвали «слабым», т.к. оно в 1012 раз слабее ядерного и в 109 раз слабее электромагнитного (оно превосходит лишь гравитационное взаимодействие; см. Слабые взаимодействия ). Слабое взаимодействие присуще всем элементарным частицам (кроме фотона). Прошло почти полвека, прежде чем физики обнаружили, что в Б.-р. может нарушаться симметрия между «правым» и «левым». Это несохранение пространственной чётности было приписано свойствам слабых взаимодействий.

  Изучение Б.-р. имело и ещё одну важную сторону. Время жизни ядра относительно Б.-р. и форма спектра b-частиц зависят от тех состояний, в которых находятся внутри ядра исходный нуклон и нуклон-продукт. Поэтому изучение Б.-р., помимо информации о природе и свойствах слабых взаимодействий, значительно пополнило представления о структуре атомных ядер.

  Вероятность Б.-р. существенно зависит от того, насколько близки друг к другу состояния нуклонов в начальном и конечном ядрах. Если состояние нуклона не меняется (нуклон как бы остаётся на прежнем месте), то вероятность максимальна и соответствующий переход начального состояния в конечное называется разрешённым. Такие переходы характерны для Б.-р. лёгких ядер. Лёгкие ядра содержат почти одинаковое число нейтронов и протонов. У более тяжёлых ядер число нейтронов больше числа протонов. Состояния нуклонов разного сорта существенно отличны между собой. Это затрудняет Б.-р.; появляются переходы, при которых Б.-р. происходит с малой вероятностью. Переход затрудняется также из-за необходимости изменения спина ядра. Такие переходы называются запрещёнными. Характер перехода сказывается и на форме энергетического спектра b-частиц.

Перейти на страницу:
Комментариев (0)
название