Большая Советская Энциклопедия (МА)
Большая Советская Энциклопедия (МА) читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Макроскопическое описание магнитных свойств веществ обычно проводится в рамках теории электромагнитного поля (см. Максвелла уравнения ), термодинамики и статистической физики . Одной из основных макроскопических характеристик магнетика, определяющих его термодинамическое состояние, является вектор намагниченности J (суммарный магнитный момент единицы объёма магнетика). Опыт показывает, что векторJ есть функция напряжённости магнитного поля Н. Графически зависимость J (Н ) изображается кривой намагничивания, имеющей различный вид у разных магнетиков. В ряде веществ между J и Н существует линейная зависимость J = cН, где c — магнитная восприимчивость (у диамагнетиков c < 0, у парамагнетиков c > 0). У ферромагнетиков c связано с Н нелинейно; у них восприимчивость зависит не только от температуры Т и свойств вещества, но и от поля Н.
Термодинамически намагниченность J магнетика определяется через потенциал термодинамический Ф (Н, Т, р ) по формуле
(здесь р — давление). В свою очередь, расчёт Ф (Н, Т, р ) основан на соотношении Гиббса — Богуславского Ф = — kT lnZ (H, T ), где k — Больцмана постоянная , Z (Н, Т ) —статистическая сумма .
Из общих положений классической статистической физики следует, что электронные системы (без учёта их квантовых свойств) не могут обладать термодинамически устойчивым магнитным моментом (теорема Бора — Ван-Левен — Терлецкого), но это противоречит опыту. Квантовая механика, объяснившая устойчивость атома, дала объяснение и М. атомов и макроскопических тел.
М. атомов и молекул обусловлен спиновыми магнитными моментами их электронов, движением электронов в оболочках атомов и молекул (так называемым орбитальным М.), спиновым и орбитальным М. нуклонов ядер. В многоэлектронных атомах сложение орбитальных и спиновых магнитных моментов производится по законам пространственного квантования: результирующий магнитный момент определяется полным угловым квантовым числомj и равен
где gi — множитель Ланде, mв — Бора магнетон (см. Магнитный момент ).
Магнитные свойства веществ определяются природой атомных носителей М. и характером их взаимодействий. О существенном влиянии этих взаимодействий на магнитные свойства говорит, в частности, сравнение магнитных свойств изолированных атомов различных элементов. Так, у атомов инертных газов (Не, Ar, Ne и других) электронные оболочки магнитно нейтральны (их суммарный магнитный момент равен нулю). Во внешнем магнитном поле инертные газы проявляют диамагнитные свойства (см. Диамагнетизм ). Электронная оболочка атомов щелочных металлов (Li, Na, К и других) обладает лишь спиновым магнитным моментом валентного электрона, орбитальный момент этих атомов равен нулю. Пары щелочных металлов парамагнитны (см. Парамагнетизм ). У атомов переходных металлов (Fe, Со, Ni и других) наблюдаются, как правило, большие спиновые и орбитальные магнитные моменты, обусловленные недостроенными d- и f- слоями их электронной оболочки (см. Атом ).
Сильная зависимость М. веществ от характера связи между микрочастицами (носителями магнитного момента) приводит к тому, что вещество неизменного химического состава в зависимости от внешних условий, а также кристаллической или фазовой структуры (например, степени упорядочения атомов в сплавах и т.п.) может обладать различными магнитными свойствами. Например, Fe, Со, Ni в кристаллическом состоянии ниже определённой температуры (Кюри точки ) обладают ферромагнитными свойствами; выше точки Кюри они эти свойства теряют (см. Ферромагнетизм ).
Количественно взаимодействие между атомными носителями М. в веществе можно охарактеризовать величиной энергии eвз этого взаимодействия, рассчитанной на отдельную пару частиц — носителей магнитного момента. Энергию eвз , обусловленную электрическим и магнитным взаимодействием микрочастиц и зависящую от их магнитных моментов, можно сопоставить с величинами энергий других атомных взаимодействий: с энергией магнитного момента mв в некотором эффективном магнитном поле Нэфф, то есть с eн = mвНэфф, и со средней энергией теплового движения частиц при некоторой эффективной критической температуре Tk , то есть с eТ = kTk. При значениях напряжённости внешнего поля Н < Нэфф или при температурах Т < Тк будут сильно проявляться магнитные свойства вещества, обусловленные eвз — внутренними взаимодействиями атомных носителей М. (так называемый «сильный» М. веществ). Наоборот, в областях Н >> Нэфф или Т >> Тк будут доминировать внешние факторы — температура или поле, подавляющие эффекты внутреннего взаимодействия («слабый» М. веществ). Эта классификация формальна, так как не вскрывает физической природы Нэфф и Tk . для полного выяснения физической природы магнитных свойств вещества необходимо знать не только величину энергии eвз по сравнению с eТ или eН, но также и её физическое происхождение и характер магнитного момента носителей (орбитальный или спиновый). Если исключить случай ядерного М., в котором проявляется эффект ядерных взаимодействий, то в электронных оболочках атомов и молекул, а также в электронной системе конденсированных веществ (жидкости, кристаллы) действуют 2 типа сил — электрические и магнитные. Мерой электрического взаимодействия может служить электростатическая энергия eэл двух электронов, находящихся на атомном расстоянии (а = 10-8 см ): eэл ~ е2 /a ~ 10-12эрг (здесь е — заряд электрона). Мерой магнитного взаимодействия служит энергия связи двух микрочастиц, обладающих магнитными моментами mв и находящихся на расстоянии а, то есть eмагн ~ m2в /а3 ~ 10-16эрг. Таким образом, eэл превосходит энергию eмагн по крайней мере на три порядка.
В связи с этим сохранение намагниченности ферромагнетиками (Fe, Со, Ni) до температур Т ~ 1000 К может быть обусловлено только электрическим взаимодействием, так как при энергии eмагн ~ 10-16эрг тепловое движение разрушило бы ориентирующее действие магнитных сил уже при 1 К. На основе квантовой механики было показано, что наряду с кулоновским электростатическим взаимодействием заряженных частиц существует также чисто квантовое электростатическое обменное взаимодействие , зависящее от взаимной ориентации магнитных моментов электронов. Таким образом, эта часть электрического по своей природе взаимодействия оказывает существенное влияние на магнитное состояние электронных систем. В частности, это взаимодействие благоприятствует упорядоченной ориентации магнитных моментов атомных носителей М. Верхний предел энергии обменного взаимодействия eоб ~ 10-13эрг.
Значение eоб > 0 соответствует параллельной ориентации атомных магнитных моментов, то есть самопроизвольной (спонтанной) намагниченности тел (ферромагнетиков). При eоб < 0 имеет место тенденция к антипараллельной ориентации соседних магнитных моментов, характерной для атомной магнитной структуры антиферромагнетиков. Изложенное позволяет провести следующую физическую классификацию М. веществ.