-->

Большая Советская Энциклопедия (ЛО)

На нашем литературном портале можно бесплатно читать книгу Большая Советская Энциклопедия (ЛО), Большая Советская Энциклопедия . "БСЭ"-- . Жанр: Энциклопедии. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Большая Советская Энциклопедия (ЛО)
Название: Большая Советская Энциклопедия (ЛО)
Дата добавления: 15 январь 2020
Количество просмотров: 82
Читать онлайн

Большая Советская Энциклопедия (ЛО) читать книгу онлайн

Большая Советская Энциклопедия (ЛО) - читать бесплатно онлайн , автор Большая Советская Энциклопедия . "БСЭ"

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 18 19 20 21 22 23 24 25 26 ... 82 ВПЕРЕД
Перейти на страницу:

  В интуиционистском же истолковании утверждение, что некоторая формула истинна, требует проведения некоторого математического построения. Например, "x$yj истинно с интуиционистской точки зрения, только если имеется общий метод, позволяющий находить для каждого х соответствующее у. Истинность "x (j

Большая Советская Энциклопедия (ЛО) - i-images-112809191.png
ùj) предполагает наличие метода для определения истинного члена дизъюнкции (j
Большая Советская Энциклопедия (ЛО) - i-images-135359482.png
ùj) для каждого значения параметра х. Например, классически общезначимые формулы, выражающие закон исключенного третьего (j
Большая Советская Энциклопедия (ЛО) - i-images-190283534.png
ùj) или закон пронесения отрицания через всеобщность (ù"x$xùj), интуиционистски необщезначимы (теория моделей развивается, однако, и для интуиционистского исчисления предикатов).

  Л. п. является обычным базисом для построения логических исчислений, предназначенных для описания тех или иных дисциплин (прикладных исчислений). С этой целью язык исчисления предикатов «конкретизируется»: к нему добавляют предикатные символы и знаки операций, выражающие специфические отношения и операции рассматриваемой дисциплины. Например, если мы стремимся описать истинные суждения арифметики натуральных чисел, то можно добавить операции сложения, умножения, отношение делимости и т.п. Затем, кроме аксиом и правил вывода исчисления прецикатов (логических постулатов), в исчисление вводятся аксиомы, выражающие специфические законы изучаемого предмета (прикладные, специфические аксиомы). Таким образом строится, например, формальная арифметика.

  Помимо классического и интуиционистского исчислений предикатов, имеются и др. логические системы, описывающие логические законы, выразимые иными логическими средствами или с иных методологических позиций. Сюда относятся исчисления модальной логики, вероятностной логики, индуктивной логики и др.

  Лит.: Клини С. К., Введение в метаматематику, пер. с англ., М., 1957.

  А. Г. Драгалин.

Логинов Евгений Федорович

Ло'гинов Евгений Федорович [10(23).10.1907, Гельсингфорс, ныне Хельсинки, — 7.10.1970, Москва], советский военачальник, маршал авиации (1967). Член КПСС с 1939. В Советской Армии с 1926. Окончил Военно-теоретическую школу ВВС (1926), военную школу лётчиков (1928), Высшую военную академию им. К. Е. Ворошилова (1949). В 1926—42 лётчик, командир звена, отряда, эскадрильи, помощник командира авиабригады. Во время Великой Отечественной войны 1941—1945 командовал авиационной дивизией и авиационным корпусом дальнего действия. После Великой Отечественной войны начальник факультета и заместитель начальника Военно-воздушной академии (1950—54), на ответственной работе в войсках; заместитель Главкома ВВС и генерал-инспектор Главной инспекции министерства обороны (1954—59), начальник Главного управления Гражданского воздушного флота (1959—1964), с 1964 министр Гражданской авиации СССР. Депутат Верховного Совета СССР 7-го созыва. Кандидат в члены ЦК КПСС (с 1966), член ЦК КПСС с 1968. Награжден 4 орденами Ленина, 3 орденами Красного Знамени, орденами Кутузова 1-й степени, Суворова 2-й степени, Александра Невского, Красной Звезды и медалями.

Большая Советская Энциклопедия (ЛО) - i009-001-225105293.jpg

Е. Ф. Логинов.

Логистика

Логи'стика (от греч. logistike — искусство вычислять, рассуждать), 1) синоним (несколько архаический) термина математическая логика. 2) Наименование этапа в развитии математической логики, представленного работами Б. Рассела и его школы (см. Логицизм). В античной математике Л. называли «искусство» вычислений и геометрических измерений, противопоставлявшееся «теоретической» математике. Г. В. Лейбниц употреблял термины logistica и logica mathematica как синонимы для разрабатывавшегося им calculus ratiocinator — исчисления умозаключений, идеи которого получили впоследствии более полное воплощение в современной математической логике. Термин «Л.» имеет ряд производных: логистический метод (способ изложения формальной логики посредством построения формализованных языков), логистическая система (то же, что формальная система, исчисление) и др.

  Лит.: Чёрч А., Введение в математическую логику, пер. с англ., т. 1, М., 1960.

  Ю. А. Гастев.

Логицизм

Логици'зм, направление в основаниях математики и философии математики, основным тезисом которого является утверждение о «сводимости математики к логике», т. е. возможности (и необходимости) определения всех исходных математических понятий (в рамках самой математики не определяемых) в терминах «чистой» логики и доказательства всех математических предложений (в том числе аксиом) опять-таки логическими средствами. Идеи Л. были выдвинуты ещё Г. В. Лейбницем, но в развёрнутом виде эта доктрина впервые была сформулирована Г. Фреге, предложившим сведение основного математического понятия — понятия натурального числа — к объёмам понятий и детально разработавшим логическую систему, средствами которой удавалось доказать все теоремы арифметики. Поскольку к тому времени в математике была практически завершена работа по сведению (в том же смысле, что и выше) основных понятий математического анализа, геометрии и алгебры к арифметике (посредством частичного сведения их друг к другу и выражения их понятий в терминах множеств теории), то, как считал Фреге, логицистическая программа была тем самым в основном выполнена.

  Но ещё до выхода в свет 2-го тома работы Фреге «Основные законы арифметики» (1893—1903) Б. Рассел обнаружил в системе Фреге противоречие (называемое обычно парадоксом Рассела, см. Парадокс). Сам Рассел, однако, разделял основные тезисы программы Л.; он предпринял попытку «исправления» системы Фреге и «спасения» её от противоречий. Решение этой задачи потребовало большой работы по последовательной и детальной формализации не только математики, но и кладущейся в её основание (согласно программе Л.) логики. Итогом этой работы явился написанный Расселом (совместно с А. Н. Уайтхедом) трёхтомный труд «Principia Mathematica» (1910—13). Главным новшеством системы Рассела — Уайтхеда (ниже РМ) явилось построение логики в виде «ступенчатого исчисления», или «теории типов». Формальные объекты этой теории разделялись на т. н. типы (ступени), и эта «иерархия типов» (а в др. модификациях системы РМ — ещё дополнительная «иерархия уровней») позволила избавиться от всех известных парадоксов. Однако для построения классической математики средствами РМ к этой системе пришлось присоединить некоторые аксиомы (см. Типов теория), содержательно характеризующие важные свойства данного конкретного «мира математики» (и, конечно, соответствующего ему мира реальных вещей), а вовсе не являющиеся «аналитическими истинами», или, по Лейбницу, истинами, верными «во всех возможных мирах». Итак, не вся расселовская математика выводима из логики. Но более того, эта математика и не есть вся математика: как показал К. Гёдель (1931), системы типа РМ (и все, не уступающие им по силе) существенно неполны — их средствами всегда можно сформулировать содержательно истинные, но не разрешимые (не доказуемые и не опровержимые) математические утверждения (см. Аксиоматический метод, Метаматематика).

  Т. о., программа Л. «чисто логического» обоснования математики оказалась невыполнимой. Тем не менее и результаты Рассела, и работы др. учёных, предложивших позднее различные усовершенствования системы РМ (например, работы американского математика У. ван О. Куайна), оказали громадное положительное влияние на развитие математической логики и науки в целом, способствуя формированию и уточнению ряда важнейших логико-математических и общеметодологических идей и построению соответствующего точного математического аппарата.

1 ... 18 19 20 21 22 23 24 25 26 ... 82 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название