Большая Советская Энциклопедия (РЕ)
Большая Советская Энциклопедия (РЕ) читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Рентгенографическое исследование расплавленных и аморфных веществ. Аморфные вещества и расплавы дают диффузное рассеяние рентгеновских лучей (см. рис. 6 в ст. Рентгеновский структурный анализ), но на рентгенограммах всё же можно выделить немногочисленные и очень размытые интерференционные максимумы. Анализ дифракционных картин (рис. 4, а) позволяет разобраться в структуре жидкостей и аморфных тел; при этом определяется функция атомного распределения r(r), т. е. усреднённое по объёму Q число атомов N в 1 см3 на расстоянии r от центрального атома: r(r) = (dN/dQ) r(рис. 4, б). Диффузный фон несёт также информацию об электронной структуре сплава.
Исследование ближнего и дальнего порядка. В твёрдых растворах атомы компонентов распределены, как правило, не хаотично, а с некоторой корреляцией (см. Дальний порядок и ближний порядок). Когда корреляция существует только в ближайших координационных сферах, возникает или ближнее упорядочение (например, в сплавах Fe — Si и Fe — Al), либо ближнее расслоение (Cr — Mo и Si — Ge). Рентгенографически это можно обнаружить по появлению дополнительного диффузного фона. С помощью Р. м. установлено, что при понижении температуры в твёрдых растворах с ближним расслоением обычно происходит распад на 2 твёрдых раствора (например, Al — Zn), а в растворах с ближним упорядочением при этом возникает дальний порядок (например, в Fe3Al). В последнем случае корреляция между упорядоченными атомами наблюдается в объёме всего образца, что сопровождается появлением на рентгенограмме слабых дополнительных сверхструктурных линий (рис. 5), по интенсивности которых можно судить о степени развития дальнего порядка.
Рентгенографическое исследование тепловых колебаний. Для исследования используют рентгенографическую методику измерения диффузного рассеяния рентгеновских лучей, вызванного тепловыми колебаниями, на монокристаллах. Эти измерения позволяют получить дисперсионные кривые n = f (k) (где n — частота, a k — волновой вектор упругих волн в кристалле) по различным направлениям в кристалле. Знание дисперсионных кривых даёт возможность определить упругие константы кристалла, вычислить константы межатомного взаимодействия и рассчитать фононны и спектр кристалла.
Об изучении рентгеновскими методами распределения дефектов в достаточно крупных и почти совершенных монокристаллах см. в ст. Рентгеновская топография.
Исследование радиационных повреждений. Р. м. позволяет установить изменения структуры кристаллических тел под действием проникающей радиации (например, изменение периодов решётки, возникновение диффузных максимумов и т.д.), а также исследовать структуру радиоактивных веществ.
Лит.: Уманский Я. С., Рентгенография металлов и полупроводников, М., 1969: его же, Рентгенография металлов, М., 1967; Иверонова В. И., Ревкевич Г. П., Теория рассеяния рентгеновских лучей, М., 1972; Хачатурян А. Г., Теория фазовых превращений и структура твердых растворов, М., 1974; Кривоглаз М. А., Применение рассеяния рентгеновских лучей и тепловых нейтронов для исследования несовершенств в кристаллах, К., 1974; Конобеевский С. Т., Действие облучения на материалы, М., 1967: Кривоглаз М. А., Теория рассеяния рентгеновских лучей и тепловых нейтронов реальными кристаллами, М., 1967; Уманский Я. С., Чириков Н. В., Диффузия и образование фаз, М., 1974; Warren В. Е., X-ray diffraction, N. Y., 1969; Schuize G. R., Metallphysik, B., 1974.
Я. С. Умайский, Н. В. Чириков.
Рис. 3. Диффузное рассеяние состаренного монокристалла Ni — Be. Дополнительное диффузное рассеяние вокруг отражений твёрдого раствора вызвано распадом пересыщенного твёрдого раствора с образованием мелкодисперсной новой фазы, имеющей ту же кристаллическую решётку, что и раствор, но отличающуюся по составу и удельному объёму (разные периоды решётки). Для каждого отражения приведены индексы интерференции, отличающиеся от миллеровских индексов порядком отражения.
Рис. 2. Схема двойного вульф-брэгговского рассеяния (II) от блочного поликристалла в область малых углов e от первичного пучка I.
Рис. 1. Профили линий дебаеграммы: а — узкие (неуширенные) сплошные отражения от кристаллитов размерами ~ 0,5 мкм; б — уширенные отражения от блоков мозаики размерами 0,1—0,2 мкм. b — полуширина размытой линии.
Рис. 4. Дебаеграмма (а) аморфного твёрдого тела (или жидкости, расплава) и график (б) изменения распределения r(r) атомной плотности Hg с расстоянием r от центра неупорядоченного скопления. Появление нескольких первых размытых максимумов интенсивности I(S) (где
) вызвано неупорядоченным скопленнием атомов (ионов).Рис. 5. Дебаеграмма сплава Fe — Al. При упорядоченном расположении атомов разного сорта, кроме обычных отражений 110, 200, 211. 220, 310, присущих твёрдому раствору с объёмноцентрированной кубической решёткой, появляются более слабые дополнительные сверхструктурные отражения 100, 111, 210, 300, 221. Нарушение порядка приводит к ослаблению интенсивности сверхструктурных линий.
Рентгенография молекул
Рентгеногра'фиямоле'кул, область рентгеновского структурного анализа, посвященная изучению строения молекул, находящихся в конденсированных состояниях (кристаллы, аморфные вещества и молекулярные жидкости). При исследовании молекул газов и паров получают их рентгенограммы, на которых наблюдаются одно или несколько размытых диффузных колец; такие рентгенограммы позволяют в ряде случаев определять межатомные расстояния в молекуле.
Рентгенодефектоскопия
Рентгенодефектоскопи'я, см. в ст. Дефектоскопия.
Рентгенодиагностика
Рентгенодиагно'стика, распознавание повреждений и заболеваний человека и животных на основе данных рентгенологического исследования. Некоторые органы (кости, лёгкие, сердце) хорошо видны на снимках при рентгенографии и на флюороскопическом экране при рентгеноскопии благодаря тому, что разные ткани имеют различные коэффициенты поглощения рентгеновских лучей; другие органы можно исследовать только после введения в организм рентгеноконтрастных веществ (см. Диагностические средства). В медицинской практике рентгенологические данные необходимы для выяснения локализации, объёма и характера анатомических изменений, изучения функции органов, наблюдения за течением болезни, её осложнениями и исходом. Поскольку Р. сопровождается лучевой нагрузкой, соблюдаются меры защиты организма от излучений. Современная клиническая диагностика основана на комплексном исследовании больного различными методами, поэтому правильная методика Р. включает такие этапы, как предварительное ознакомление с жалобами больного и клинической картиной болезни; сопоставление данных рентгенологических и других диагностических методов, а также результатов предыдущих рентгенологических исследований; проверку правильности рентгенологического заключения путём дальнейшего наблюдения за больным и эффектом лечебных мероприятий.
Лит.: Методика и техника рентгенологического исследования, под ред. И. Г. Лагуновой, М., 1969; Линденбратен Л. Д., Этапы диагностического анализа рентгенограмм. (На пути к теории рентгенологического распознавания), «Вестник рентгенологии и радиологии», 1972, № 2; Poppe Н., Technik der Röntgendiagnostik, Stuttg., 1961.