Большая Советская Энциклопедия (ХР)
Большая Советская Энциклопедия (ХР) читать книгу онлайн
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Лит.: Ландсберг Г. С., Оптика, 5 изд., М., 1976 (Общий курс физики); Герцбергер М., Современная геометрическая оптика, пер. с англ., М., 1962; Борн М., Вольф Э., Основы оптики, пер. с англ., М., 1973.
Рис. к ст. Хроматическая аберрация.
Хроматическая гамма
Хромати'ческая га'мма,гамма с полутоновым расстоянием между ступенями, насчитывающая 12 звуков в пределах октавы. Рассматривается как мажорная или минорная гамма с проходящими полутонами. Отсюда правила её записи: все диатонические ступени нотируются без какой-либо энгармонической замены, прочие ступени в мажоре при движении вверх обозначаются через повышения основных (только VI повышенная заменяется VII пониженной), а при движении вниз — через понижения основных (только V пониженная заменяется IV повышенной). В миноре при движении вверх применяется написание параллельного, при движении вниз — одноимённого мажора.
Хроматическая гамма до мажор — восходящая и нисходящая.
Хроматическая поляризация
Хромати'ческая поляриза'ция, см. Поляризация света .
Хроматография
Хроматогра'фия (от греч. chroma, родительный падеж chromatos — цвет, краска и ...графия ), физико-химический метод разделения и анализа смесей, основанный на распределении их компонентов между двумя фазами — неподвижной и подвижной (элюент), протекающей через неподвижную.
Историческая справка. Метод разработан в 1903 М. Цветом , который показал, что при пропускании смеси растительных пигментов через слой бесцветного сорбента индивидуальные вещества располагаются в виде отдельных окрашенных зон. Полученный таким образом послойно окрашенный столбик сорбента Цвет назвал хроматограммой, а метод — Х. Впоследствии термин «хроматограмма» стали относить к разным способам фиксации результатов многих видов Х. Однако вплоть до 40-х гг. Х. не получила должного развития. Лишь в 1941 А. Мартин и Р. Синг открыли метод распределительной Х. и показали его широкие возможности для исследования белков и углеводов. В 50-е гг. Мартин и американский учёный А. Джеймс разработали метод газо-жидкостной Х.
Основные виды Х. В зависимости от природы взаимодействия, обусловливающего распределение компонентов между элюентом и неподвижной фазой, различают следующие основные виды Х. — адсорбционную, распределительную, ионообменную, эксклюзионную (молекулярно-ситовую) и осадочную. Адсорбционная Х. основана на различии сорбируемости разделяемых веществ адсорбентом (твёрдое тело с развитой поверхностью); распределительная Х. — на разной растворимости компонентов смеси в неподвижной фазе (высококипящая жидкость, нанесённая на твёрдый макропористый носитель) и элюенте (следует иметь в виду, что при распределительном механизме разделения на перемещение зон компонентов частичное влияние оказывает и адсорбционное взаимодействие анализируемых компонентов с твёрдым сорбентом); ионообменная Х. — на различии констант ионообменного равновесия между неподвижной фазой (ионитом) и компонентами разделяемой смеси; эксклюзионная (молекулярно-ситовая) Х. — на разной проницаемости молекул компонентов в неподвижную фазу (высокопористый неионогенный гель). Эксклюзионная Х. подразделяется на гель-проникающую (ГПХ), в которой элюент — неводный растворитель, и гель-фильтрацию, где элюент — вода. Осадочная Х, основана на различной способности разделяемых компонентов выпадать в осадок на твёрдой неподвижной фазе.
В соответствии с агрегатным состоянием элюента различают газовую и жидкостную Х. В зависимости от агрегатного состояния неподвижной фазы газовая Х. бывает газо-адсорбционной (неподвижная фаза — твёрдый адсорбент) и газожидкостной (неподвижная фаза — жидкость), а жидкостная Х. — жидкостно-адсорбционной (или твёрдо-жидкостной) и жидкостно-жидкостной. Последняя, как и газо-жидкостная, является распределительной Х. К твёрдо-жидкостной Х. относятся тонкослойная и бумажная.
Различают колоночную и плоскостную Х. В колоночной сорбентом заполняют специальные трубки — колонки, а подвижная фаза движется внутри колонки благодаря перепаду давления. Разновидность колоночной Х. — капиллярная, когда тонкий слой сорбента наносится на внутренние стенки капиллярной трубки. Плоскостная Х. подразделяется на тонкослойную и бумажную. В тонкослойной Х. тонкий слой гранулированного сорбента или пористая плёнка наносится на стеклянную или металлическую пластинки; в случае бумажной Х. используют специальную хроматографическую бумагу. В плоскостной Х. перемещение подвижной фазы происходит благодаря капиллярным силам.
При хроматографировании возможно изменение по заданной программе температуры, состава элюента, скорости его протекания и др. параметров.
В зависимости от способа перемещения разделяемой смеси вдоль слоя сорбента различают следующие варианты Х.: фронтальный, проявительный и вытеснительный. При фронтальном варианте в слой сорбента непрерывно вводится разделяемая смесь, состоящая из газа-носителя и разделяемых компонентов, например 1, 2, 3, 4, которая сама является подвижной фазой. Через некоторое время после начала процесса наименее сорбируемый компонент (например, 1) опережает остальные и выходит в виде зоны чистого вещества раньше всех, а за ним в порядке сорбируемости последовательно располагаются зоны смесей компонентов: 1 + 2, 1 + 2 + 3, 1 + 2 + 3 + 4 (рис. , a). При проявительном варианте через слой сорбента непрерывно проходит поток элюента и периодически в слой сорбента вводится разделяемая смесь веществ. Через определённое время происходит деление исходной смеси на чистые вещества, располагающиеся отдельными зонами на сорбенте, между которыми находятся зоны элюента (рис. , б). При вытеснительном варианте в сорбент вводится разделяемая смесь, а затем поток газа-носителя, содержащего вытеснитель (элюент), при движении которого смесь через некоторый период времени разделится на зоны чистых веществ, между которыми окажутся зоны их смеси (рис. , в). Ряд видов Х. осуществляется с помощью приборов, называемых хроматографами , в большинстве из которых реализуется проявительный вариант Х. Хроматографы используют для анализа и для препаративного (в т. ч. промышленного) разделения смесей веществ. При анализе разделённые в колонке хроматографа вещества вместе с элюентом попадают через различные промежутки времени в установленное на выходе из хроматографической колонки детектирующее устройство, регистрирующее их концентрации во времени. Полученную в результате этого выходную кривую называют хроматограммой. Для качественного хроматографического анализа определяют время от момента ввода пробы до выхода каждого компонента из колонки при данной температуре и при использовании определённого элюента. Для количественного анализа определяют высоты или площади хроматографических пиков с учётом коэффициентов чувствительности используемого детектирующего устройства к анализируемым веществам.
Для анализа и разделения веществ, переходящих без разложения в парообразное состояние, наибольшее применение получила газовая Х., где в качестве элюента (газа-носителя) используются гелий, азот, аргон и др. газы. Для газо-адсорбционного варианта Х. в качестве сорбента (частицы диаметром 0,1—0,5 мм ) используют силикагели , алюмогели, молекулярные сита , пористые полимеры и др. сорбенты с удельной поверхностью 5—500 м2 /г. Для газо-жидкостной Х. сорбент готовят нанесением жидкости в виде плёнки (высококипящие углеводороды, сложные эфиры, силоксаны и др.) толщиной несколько мкм на твёрдый носитель с удельной поверхностью 0,5—5 м2 /г и более. Рабочие температурные пределы для газо-адсорбционного варианта Х. от —70 до 600 °С, для газо-жидкостного от —20 до 400 °С. Газовой Х. можно разделить несколько см3 газа или мг жидких (твёрдых) веществ; время анализа от несколькихсек до нескольких часов.