-->

Большая Советская Энциклопедия (ПЕ)

На нашем литературном портале можно бесплатно читать книгу Большая Советская Энциклопедия (ПЕ), Большая Советская Энциклопедия . "БСЭ"-- . Жанр: Энциклопедии. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Большая Советская Энциклопедия (ПЕ)
Название: Большая Советская Энциклопедия (ПЕ)
Дата добавления: 15 январь 2020
Количество просмотров: 105
Читать онлайн

Большая Советская Энциклопедия (ПЕ) читать книгу онлайн

Большая Советская Энциклопедия (ПЕ) - читать бесплатно онлайн , автор Большая Советская Энциклопедия . "БСЭ"

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

Перейти на страницу:

  В атомах лантаноидов и актиноидов происходит достройка ранее незавершённых f -подоболочек с n , на 2 единицы меньшим номера периода; конфигурация внешние оболочки сохраняется неизменной (ns2 ); f -электроны у лантаноидов не оказывают существенного влияния на химические свойства. Лантаноиды проявляют преимущественно степень окисления III (за счёт двух 6s -электронов и одного d -электрона, появляющегося в атоме La); однако такое объяснение не является достаточно удовлетворительным, так как 5d -электрон содержится только в атомах La, Ce, Gd и Lu; поэтому считается, что в др. случаях степень окисления III обусловлена переходом одного из 4f -электронов в 5d -подоболочку. Что касается актиноидов, то в интервале Z = 90—95 энергии связи электронов 6d и 5f оказываются весьма близкими, это объясняет способность элементов давать соединения в широком диапазоне степеней окисления — до VII у Np, Pu и Am. У актиноидов с Z ³ 96 предпочтительной становится степень окисления III. Оценка химических свойств К и и элемента 105 позволяет считать, что в этой области П. с. э. начинается систематическое заполнение 6d -подоболочки.

  Выше были в общих чертах объяснены причины и особенности периодического изменения свойств химических элементов по мере роста Z. Это объяснение основано на анализе закономерностей реальной схемы формирования электронных конфигураций свободных атомов. Однако знание электронной конфигурации свободного атома часто не позволяет сделать однозначный вывод о важнейших химических свойствах, которые должен проявлять соответствующий элемент. Например, внешние электронные конфигурации атомов He и щёлочноземельных металлов совпадают (ns2 ), но «сходство» гелия с последними ограничивается лишь определённой аналогией в спектрах. Поэтому принцип периодического (по мере возрастания Z) повторения сходных типов электронных конфигураций лежит в основе периодической системы свободных атомов. Что касается П. с. э., то она отражает закономерное изменение свойств элементов, проявляемых ими при химических взаимодействиях; в ходе последних происходит перестройка электронных конфигураций взаимодействующих атомов, иногда значительная. Поэтому между свободными и связанными атомами существует определённое различие. В целом же сходство электронных конфигураций свободных атомов коррелирует с подобием химического поведения соответствующих элементов. Задача строгого количественного объяснения всей специфики проявляемых химическими элементами свойств и периодичности этих свойств оказывается чрезвычайно сложной, поэтому нельзя утверждать, что создана количественная теория П. с. э. Отдельные аспекты такой теории разрабатываются в русле современных методов квантовой механики (см. Квантовая химия ,Валентность ).

  Верхняя граница П. с. э. пока неизвестна, поэтому неизвестно и конечное количество элементов, охватываемых П. с. э. Вопрос о пределе искусственного синтеза элементов также пока не решен. Все изотопы уже известных элементов с Z ³ 101 являются короткоживущими (см. Ядерная химия ). Однако существуют предположения, что ядра атомов гипотетических элементов с Z = 114, 126, 164 и 184 будут достаточно устойчивы по отношению к спонтанному делению. Это даёт основания рассчитывать на осуществление синтеза таких элементов. Оценка электронных конфигураций и важнейших свойств неизвестных элементов седьмого периода показывает, что эти элементы, по-видимому, должны быть аналогами соответствующих элементов шестого периода. Напротив, для восьмого периода (состоящего, согласно теории, из 50 элементов) предсказывается весьма сложный характер изменения химических свойств по мере роста Z, связанный с резким нарушением последовательности заполнения электронных подоболочек в атомах.

  Значение П. с. э. П. с. э. сыграла и продолжает играть огромную роль в развитии естествознания. Она явилась важнейшим достижением атомно-молекулярного учения, позволила дать современное определение понятия «химический элемент» и уточнить понятия о простых веществах и соединениях. Закономерности, вскрытые П. с. э., оказали существенное влияние на разработку теории строения атомов, способствовали объяснению явления изотонии. С П. с. э. связана строго научная постановка проблемы прогнозирования в химии, что проявилось как в предсказании существования неизвестных элементов и их свойств, так и в предсказании новых особенностей химического поведения уже открытых элементов. П. с. э.— фундамент химии, в первую очередь неорганической; она существенно помогает решению задач синтеза веществ с заранее заданными свойствами, разработке новых материалов, в частности полупроводниковых, подбору специфических катализаторов для различных химических процессов и т.д. П. с. э.— также научная основа преподавания химии.

  Лит.: Менделеев Д. И., Периодический закон. Основные статьи, М., 1958; Кедров Б. М., Три аспекта атомистики. ч. 3. Закон Менделеева, М., 1969; Рабинович Е., Тило Э., Периодическая система элементов. История и теория, М.— Л., 1933; Карапетьянц М. Х., Дракин С. И., Строение вещества, М., 1967; Астахов К. В., Современное состояние периодической системы Д. И. Менделеева, М., 1969; Кедров Б. М., Трифонов Д. Н., Закон периодичности и химические элементы. Открытия и хронология, М., 1969; Сто лет периодического закона химических элементов. Сборник статей, М., 1969; Сто лет периодического закона химических элементов. Доклады на пленарных заседаниях, М., 1971; Spronsen J. W. van, The periodic system of chemical elements. A history of the first hundred years, Amst.— L.— N. Y., 1969; Клечковский В. М., Распределение атомных электронов и правило последовательного заполнения (n + l)-групп, М., 1968; Трифонов Д. Н., О количественной интерпретации периодичности, М., 1971; Некрасов Б. В., Основы общей химии, т. 1—2, 3 изд., М., 1973; Кедров Б. М., Трифонов Д. Н., О современных проблемах периодической системы, М., 1974.

  Д. Н. Трифонов.

Большая Советская Энциклопедия (ПЕ) - i008-pictures-001-297594537.jpg

Рис. 1. Таблица «Опыт системы элементов», основанной на их атомном весе и химическом сходстве, составленная Д. И. Менделеевым 1 марта 1869.

Большая Советская Энциклопедия (ПЕ) - i009-001-241269822.jpg

Рис. 3. Длинная форма периодической системы элементов (современный вариант).

Большая Советская Энциклопедия (ПЕ) - i010-001-258909398.jpg

Рис. 4. Лестничная форма периодической системы элементов (по Н. Бору, 1921).

Большая Советская Энциклопедия (ПЕ) - i010-001-259261761.jpg

Рис. 2. «Естественная система элементов» Д. И. Менделеева (короткая форма), опубликованная во 2-й части 1-го издания Основ химии в 1871.

Большая Советская Энциклопедия (ПЕ) - i010-001-270612148.jpg

Периодическая система элементов Д. И. Менделеева.

Периодическая структура

Периоди'ческая структу'ра в технике СВЧ, структура (система), совмещающаяся сама с собой при параллельном переносе на некоторое конечное расстояние. Минимальная величина этого расстояния d называется периодом. Строго говоря, П. с. бесконечны и служат идеализированными моделями для теоретического изучения реальных объектов. На практике применяются ограниченные участки П. с., которые условно также называются П. с. По числу независимых направлений переноса П. с. различают одномерно, двумерно и трёхмерно периодические структуры — ОПС, ДПС и ТПС (рис. 1 , 2 ). ОПС и ДПС применяются в качестве замедляющих систем ,антенн ,дифракционных решёток ; ДПС и ТПС используют для создания линз, призм и др. устройств, определяющих направление распространения электромагнитных волн.

  Любую составляющую А электрического и магнитного полей в точке П. с. с координатой z (направления периодичности П. с. и оси Z совпадают) можно представить в виде ряда

Перейти на страницу:
Комментариев (0)
название